46 resultados para linear feedback control
Resumo:
Some necessary and sufficient conditions for closed-loop eigenstructure assignment by output feedback in time-invariant linear multivariable control systems are presented. A simple condition on a square matrix necessary and sufficient for it to be the closed-loop plant matrix of a given system with some output feedback is the basis of the paper. Some known results on entire eigenstructure assignment are deduced from this. The concept of an inner inverse of a matrix is employed to obtain a condition concerning the assignment of an eigenstructure consisting of the eigenvalues and a mixture of left and right eigenvectors.
Resumo:
Previously the author described how control engineering can be introduced using little mathematics in a first year course, the aim being to make the subject accessible across different degrees. One reaction to this was that it was a good idea, but there was not space to include it in the curriculum where, typically control engineering is not introduced until the second year. This paper describes how the author has used a review of the first year teaching to develop a module in which feedback, control and electronics are integrated coherently. This is beneficial as concepts in control and electronics mutually reinforce each other. This has been achieved during a reduction in the available time for teaching the material. This paper describes the strategy used to successfully develop the module, the integrated module and positive student reaction.
Resumo:
We performed mutual tapping experiments between two humans to investigate the conditions required for synchronized motion. A transition from an alternative mode to a synchronization mode was discovered under the same conditions when a subject changed from a reactive mode to an anticipation mode in single tapping experiments. Experimental results suggest that the cycle time for each tapping motion is tuned by a proportional control that is based on synchronization errors and cycle time errors. As the tapping frequency increases, the mathematical model based on the feedback control in the sensory-motor closed loop predicts a discrete mode transition as the gain factors of the proportional control decease. The conditions of the synchronization were shown as a consequence of the coupled dynamics based on the subsequent feedback loop in the sensory-motor system.
Resumo:
This paper presents a controller design scheme for a priori unknown non-linear dynamical processes that are identified via an operating point neurofuzzy system from process data. Based on a neurofuzzy design and model construction algorithm (NeuDec) for a non-linear dynamical process, a neurofuzzy state-space model of controllable form is initially constructed. The control scheme based on closed-loop pole assignment is then utilized to ensure the time invariance and linearization of the state equations so that the system stability can be guaranteed under some mild assumptions, even in the presence of modelling error. The proposed approach requires a known state vector for the application of pole assignment state feedback. For this purpose, a generalized Kalman filtering algorithm with coloured noise is developed on the basis of the neurofuzzy state-space model to obtain an optimal state vector estimation. The derived controller is applied in typical output tracking problems by minimizing the tracking error. Simulation examples are included to demonstrate the operation and effectiveness of the new approach.
Resumo:
This paper presents a hybrid control strategy integrating dynamic neural networks and feedback linearization into a predictive control scheme. Feedback linearization is an important nonlinear control technique which transforms a nonlinear system into a linear system using nonlinear transformations and a model of the plant. In this work, empirical models based on dynamic neural networks have been employed. Dynamic neural networks are mathematical structures described by differential equations, which can be trained to approximate general nonlinear systems. A case study based on a mixing process is presented.
Resumo:
The relationship between minimum variance and minimum expected quadratic loss feedback controllers for linear univariate discrete-time stochastic systems is reviewed by taking the approach used by Caines. It is shown how the two methods can be regarded as providing identical control actions as long as a noise-free measurement state-space model is employed.
Resumo:
Eigenvalue assignment methods are used widely in the design of control and state-estimation systems. The corresponding eigenvectors can be selected to ensure robustness. For specific applications, eigenstructure assignment can also be applied to achieve more general performance criteria. In this paper a new output feedback design approach using robust eigenstructure assignment to achieve prescribed mode input and output coupling is described. A minimisation technique is developed to improve both the mode coupling and the robustness of the system, whilst allowing the precision of the eigenvalue placement to be relaxed. An application to the design of an automatic flight control system is demonstrated.
Resumo:
Numerical methods are described for determining robust, or well-conditioned, solutions to the problem of pole assignment by state feedback. The solutions obtained are such that the sensitivity of the assigned poles to perturbations in the system and gain matrices is minimized. It is shown that for these solutions, upper bounds on the norm of the feedback matrix and on the transient response are also minimized and a lower bound on the stability margin is maximized. A measure is derived which indicates the optimal conditioning that may be expected for a particular system with a given set of closed-loop poles, and hence the suitability of the given poles for assignment.
Resumo:
The results from applying a sensor fusion process to an adaptive controller used to balance all inverted pendulum axe presented. The goal of the sensor fusion process was to replace some of the four mechanical measurements, which are known to be sufficient inputs for a linear state feedback controller to balance the system, with optic flow variables. Results from research into the psychology of the sense of balance in humans were the motivation for the investigation of this new type of controller input. The simulated model of the inverted pendulum and the virtual reality environments used to provide the optical input are described. The successful introduction of optical information is found to require the preservation of at least two of the traditional input types and entail increased training till-le for the adaptive controller and reduced performance (measured as the time the pendulum remains upright)
Resumo:
The combination of model predictive control based on linear models (MPC) with feedback linearization (FL) has attracted interest for a number of years, giving rise to MPC+FL control schemes. An important advantage of such schemes is that feedback linearizable plants can be controlled with a linear predictive controller with a fixed model. Handling input constraints within such schemes is difficult since simple bound contraints on the input become state dependent because of the nonlinear transformation introduced by feedback linearization. This paper introduces a technique for handling input constraints within a real time MPC/FL scheme, where the plant model employed is a class of dynamic neural networks. The technique is based on a simple affine transformation of the feasible area. A simulated case study is presented to illustrate the use and benefits of the technique.