32 resultados para lateral bipolar junction transistor (BJT)
Resumo:
Over the last 25years, "mindblindness" (deficits in representing mental states) has been one of the primary explanations behind the hallmark social-communication difficulties in autism spectrum conditions (ASC). However, highlighting neural systems responsible for mindblindness and their relation to variation in social impairments has remained elusive. In this study we show that one of the neural systems responsible for mindblindness in ASC and its relation to social impairments is the right temporo-parietal junction (RTPJ). Twenty-nine adult males with ASC and 33 age and IQ-matched Controls were scanned with fMRI while making reflective mentalizing or physical judgments about themselves or another person. Regions of interest within mentalizing circuitry were examined for between-group differences in activation during mentalizing about self and other and correlations with social symptom severity. RTPJ was the only mentalizing region that responded atypically in ASC. In Controls, RTPJ was selectively more responsive to mentalizing than physical judgments. This selectivity for mentalizing was not apparent in ASC and generalized across both self and other. Selectivity of RTPJ for mentalizing was also associated with the degree of reciprocal social impairment in ASC. These results lend support to the idea that RTPJ is one important neural system behind mindblindness in ASC. Understanding the contribution of RTPJ in conjunction with other neural systems responsible for other component processes involved in social cognition will be illuminating in fully explaining the hallmark social-communication difficulties of autism.
Resumo:
Lateral epicondylitis (LE) is hypothesized to occur as a result of repetitive, strenuous and abnormal postural activities of the elbow and wrist. There is still a lack of understanding of how wrist and forearm positions contribute to this condition during common manual tasks. In this study the wrist kinematics and the wrist extensors’ musculotendon patterns were investigated during a manual task believed to elicit LE symptoms in susceptible subjects. A 42-year-old right-handed male, with no history of LE, performed a repetitive movement involving pushing and turning a spring-loaded mechanism. Motion capture data were acquired for the upper limb and an inverse kinematic and dynamic analysis was subsequently carried out. Results illustrated the presence of eccentric contractions sustained by the extensor carpi radialis longus (ECRL), together with an almost constant level of tendon strain of both extensor carpi radialis brevis (ECRB) and extensor digitorum communis lateral (EDCL) branch. It is believed that these factors may partly contribute to the onset of LE as they are both responsible for the creation of microtears at the tendons’ origins. The methodology of this study can be used to explore muscle actions during movements that might cause or exacerbate LE.
Resumo:
In vertebrates, body musculature originates from somites, whereas head muscles originate from the cranial mesoderm. Neck muscles are located in the transition between these regions. We show that the chick occipital lateral plate mesoderm has myogenic capacity and gives rise to large muscles located in the neck and thorax. We present molecular and genetic evidence to show that these muscles not only have a unique origin, but additionally display a distinct temporal development, forming later than any other muscle group described to date. We further report that these muscles, found in the body of the animal, develop like head musculature rather than deploying the programme used by the trunk muscles. Using mouse genetics we reveal that these muscles are formed in trunk muscle mutants but are absent in head muscle mutants. In concordance with this conclusion, their connective tissue is neural crest in origin. Finally, we provide evidence that the mechanism by which these neck muscles develop is conserved in vertebrates.
Resumo:
We report the single-crystal X-ray structure for the complex of the bisacridine bis-(9-aminooctyl(2-(dimethylaminoethyl)acridine-4-carboxamide)) with the oligonucleotide d(CGTACG)2 to a resolution of 2.4 Å. Solution studies with closed circular DNA show this compound to be a bisintercalating threading agent, but so far we have no crystallographic or NMR structural data conforming to the model of contiguous intercalation within the same duplex. Here, with the hexameric duplex d(CGTACG), the DNA is observed to undergo a terminal cytosine base exchange to yield an unusual guanine quadruplex intercalation site through which the bisacridine threads its octamethylene linker to fuse two DNA duplexes. The 4-carboxamide side-chains form anchoring hydrogen-bonding interactions with guanine O6 atoms on each side of the quadruplex. This higher-order DNA structure provides insight into an unexpected property of bisintercalating threading agents, and suggests the idea of targeting such compounds specifically at four-way DNA junctions.
Resumo:
DNA-strand exchange is a vital step in the recombination process, of which a key intermediate is the four-way DNA Holliday junction formed transiently in most living organisms. Here, the single-crystal structure at a resolution of 2.35 Å of such a DNA junction formed by d(CCGGTACCGG)2, which has crystallized in a more highly symmetrical packing mode to that previously observed for the same sequence, is presented. In this case, the structure is isomorphous to the mismatch sequence d(CCGGGACCGG)2, which reveals the roles of both lattice and DNA sequence in determining the junction geometry. The helices cross at the larger angle of 43.0° (the previously observed angle for this sequence was 41.4°) as a right-handed X. No metal cations were observed; the crystals were grown in the presence of only group I counter-cations.
Resumo:
The structure of the duplex d[CG(5-BrU)ACG]2 bound to 9-bromophenazine-4-carboxamide has been solved through MAD phasing at 2.0 Å resolution. It shows an unexpected and previously unreported intercalation cavity stabilized by the drug and novel binding modes of Co2+ ions at certain guanine N7 sites. For the intercalation cavity the terminal cytosine is rotated to pair with the guanine of a symmetry-related duplex to create a pseudo-Holliday junction geometry, with two such cavities linked through the minor groove interactions of the N2/N3 guanine sites at an angle of 40°, creating a quadruplex-like structure. The mode of binding of the drug is shown to be disordered, with the major conformations showing the side chain bound to the N7 position of adjacent guanines. The other end of the duplex exhibits a terminal base fraying in the presence of Co2+ ions linking symmetry-related guanines, causing the helices to intertwine through the minor groove. The stabilization of the structure by the intercalating drug shows that this class of compound may bind to DNA junctions as well as duplex DNA or to strand-nicked DNA (‘hemi-intercalated'), as in the cleavable complex. This suggests a structural basis for the dual poisoning of topoisomerase I and II enzymes by this family of drugs.
Resumo:
In nonhuman species, testosterone is known to have permanent organizing effects early in life that predict later expression of sex differences in brain and behavior. However, in humans, it is still unknown whether such mechanisms have organizing effects on neural sexual dimorphism. In human males, we show that variation in fetal testosterone (FT) predicts later local gray matter volume of specific brain regions in a direction that is congruent with sexual dimorphism observed in a large independent sample of age-matched males and females from the NIH Pediatric MRI Data Repository. Right temporoparietal junction/posterior superior temporal sulcus (RTPJ/pSTS), planum temporale/parietal operculum (PT/PO), and posterior lateral orbitofrontal cortex (plOFC) had local gray matter volume that was both sexually dimorphic and predicted in a congruent direction by FT. That is, gray matter volume in RTPJ/pSTS was greater for males compared to females and was positively predicted by FT. Conversely, gray matter volume in PT/PO and plOFC was greater in females compared to males and was negatively predicted by FT. Subregions of both amygdala and hypothalamus were also sexually dimorphic in the direction of Male > Female, but were not predicted by FT. However, FT positively predicted gray matter volume of a non-sexually dimorphic subregion of the amygdala. These results bridge a long-standing gap between human and nonhuman species by showing that FT acts as an organizing mechanism for the development of regional sexual dimorphism in the human brain.
Resumo:
Neuronal gap junctions are receiving increasing attention as a physiological means of intercellular communication, yet our understanding of them is poorly developed when compared to synaptic communication. Using microfluorimetry, we demonstrate that differentiation of SN56 cells (hybridoma cells derived from murine septal neurones) leads to the spontaneous generation of Ca(2+) waves. These waves were unaffected by tetrodotoxin (1microM), but blocked by removal of extracellular Ca(2+), or addition of non-specific Ca(2+) channel inhibitors (Cd(2+) (0.1mM) or Ni(2+) (1mM)). Combined application of antagonists of NMDA receptors (AP5; 100microM), AMPA/kainate receptors (NBQX; 20microM), nicotinic AChR receptors (hexamethonium; 100microM) or inotropic purinoceptors (brilliant blue; 100nM) was also without effect. However, Ca(2+) waves were fully prevented by carbenoxolone (200microM), halothane (3mM) or niflumic acid (100microM), three structurally diverse inhibitors of gap junctions, and mRNA for connexin 36 was detected by PCR. Whole-cell patch-clamp recordings revealed spontaneous inward currents in voltage-clamped cells which we inhibited by Cd(2+), Ni(2+) or niflumic acid. Our data suggest that differentiated SN56 cells generated spontaneous Ca(2+) waves which are propagated by intercellular gap junctions. We propose that this system can be exploited conveniently for the development of neuronal gap junction modulators.
Resumo:
Chaotic traffic, prevalent in many countries, is marked by a large number of vehicles driving with different speeds without following any predefined speed lanes. Such traffic rules out using any planning algorithm for these vehicles which is based upon the maintenance of speed lanes and lane changes. The absence of speed lanes may imply more bandwidth and easier overtaking in cases where vehicles vary considerably in both their size and speed. Inspired by the performance of artificial potential fields in the planning of mobile robots, we propose here lateral potentials as measures to enable vehicles to decide about their lateral positions on the road. Each vehicle is subjected to a potential from obstacles and vehicles in front, road boundaries, obstacles and vehicles to the side and higher speed vehicles to the rear. All these potentials are lateral and only govern steering the vehicle. A speed control mechanism is also used for longitudinal control of vehicle. The proposed system is shown to perform well for obstacle avoidance, vehicle following and overtaking behaviors.
Resumo:
The slow advective-timescale dynamics of the atmosphere and oceans is referred to as balanced dynamics. An extensive body of theory for disturbances to basic flows exists for the quasi-geostrophic (QG) model of balanced dynamics, based on wave-activity invariants and nonlinear stability theorems associated with exact symmetry-based conservation laws. In attempting to extend this theory to the semi-geostrophic (SG) model of balanced dynamics, Kushner & Shepherd discovered lateral boundary contributions to the SG wave-activity invariants which are not present in the QG theory, and which affect the stability theorems. However, because of technical difficulties associated with the SG model, the analysis of Kushner & Shepherd was not fully nonlinear. This paper examines the issue of lateral boundary contributions to wave-activity invariants for balanced dynamics in the context of Salmon's nearly geostrophic model of rotating shallow-water flow. Salmon's model has certain similarities with the SG model, but also has important differences that allow the present analysis to be carried to finite amplitude. In the process, the way in which constraints produce boundary contributions to wave-activity invariants, and additional conditions in the associated stability theorems, is clarified. It is shown that Salmon's model possesses two kinds of stability theorems: an analogue of Ripa's small-amplitude stability theorem for shallow-water flow, and a finite-amplitude analogue of Kushner & Shepherd's SG stability theorem in which the ‘subsonic’ condition of Ripa's theorem is replaced by a condition that the flow be cyclonic along lateral boundaries. As with the SG theorem, this last condition has a simple physical interpretation involving the coastal Kelvin waves that exist in both models. Salmon's model has recently emerged as an important prototype for constrained Hamiltonian balanced models. The extent to which the present analysis applies to this general class of models is discussed.
Resumo:
Serial sampling and stable isotope analysis performed along the growth axis of vertebrate tooth enamel records differences attributed to seasonal variation in diet, climate or animal movement. Because several months are required to obtain mature enamel in large mammals, modifications in the isotopic composition of environmental parameters are not instantaneously recorded, and stable isotope analysis of tooth enamel returns a time-averaged signal attenuated in its amplitude relative to the input signal. For convenience, stable isotope profiles are usually determined on the side of the tooth where enamel is thickest. Here we investigate the possibility of improving the time resolution by targeting the side of the tooth where enamel is thinnest. Observation of developing third molars (M3) in sheep shows that the tooth growth rate is not constant but decreases exponentially, while the angle between the first layer of enamel deposited and the enamel–dentine junction increases as a tooth approaches its maximal length. We also noted differences in thickness and geometry of enamel growth between the mesial side (i.e., the side facing the M2) and the buccal side (i.e., the side facing the cheek) of the M3. Carbon and oxygen isotope variations were measured along the M3 teeth from eight sheep raised under controlled conditions. Intra-tooth variability was systematically larger along the mesial side and the difference in amplitude between the two sides was proportional to the time of exposure to the input signal. Although attenuated, the mesial side records variations in the environmental signal more faithfully than the buccal side. This approach can be adapted to other mammals whose teeth show lateral variation in enamel thickness and could potentially be used as an internal check for diagenesis.
Resumo:
Roots are important to plants for a wide variety of processes, including nutrient and water uptake, anchoring and mechanical support, storage functions, and as the major interface between the plant and various biotic and abiotic factors in the soil environment. Therefore, understanding the development and architecture of roots holds potential for the manipulation of root traits to improve the productivity and sustainability of agricultural systems and to better understand and manage natural ecosystems. While lateral root development is a traceable process along the primary root and different stages can be found along this longitudinal axis of time and development, root system architecture is complex and difficult to quantify. Here, we comment on assays to describe lateral root phenotypes and propose ways to move forward regarding the description of root system architecture, also considering crops and the environment.
Resumo:
The modulation of air–sea heat fluxes by geostrophic eddies due to the stirring of temperature at the sea surface is discussed and quantified. It is argued that the damping of eddy temperature variance by such air–sea fluxes enhances the dissipation of surface temperature fields. Depending on the time scale of damping relative to that of the eddying motions, surface eddy diffusivities can be significantly enhanced over interior values. The issues are explored and quantified in a controlled setting by driving a tracer field, a proxy for sea surface temperature, with surface altimetric observations in the Antarctic Circumpolar Current (ACC) of the Southern Ocean. A new, tracer-based diagnostic of eddy diffusivity is introduced, which is related to the Nakamura effective diffusivity. Using this, the mixed layer lateral eddy diffusivities associated with (i) eddy stirring and small-scale mixing and (ii) surface damping by air–sea interaction is quantified. In the ACC, a diffusivity associated with surface damping of a comparable magnitude to that associated with eddy stirring (;500 m2 s21) is found. In frontal regions prevalent in the ACC, an augmentation of surface lateral eddy diffusivities of this magnitude is equivalent to an air–sea flux of 100 W m22 acting over a mixed layer depth of 100 m, a very significant effect. Finally, the implications for other tracer fields such as salinity, dissolved gases, and chlorophyll are discussed. Different tracers are found to have surface eddy diffusivities that differ significantly in magnitude.