22 resultados para latent growth curve modeling
Resumo:
Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling cyanobacterial behaviour in freshwaters is an important tool for understanding their population dynamics and predicting the location and timing of the bloom events in lakes, reservoirs and rivers. A new deterministic–mathematical model was developed, which simulates the growth and movement of cyanobacterial blooms in river systems. The model focuses on the mathematical description of the bloom formation, vertical migration and lateral transport of colonies within river environments by taking into account the major factors that affect the cyanobacterial bloom formation in rivers including light, nutrients and temperature. A parameter sensitivity analysis using a one-at-a-time approach was carried out. There were two objectives of the sensitivity analysis presented in this paper: to identify the key parameters controlling the growth and movement patterns of cyanobacteria and to provide a means for model validation. The result of the analysis suggested that maximum growth rate and day length period were the most significant parameters in determining the population growth and colony depth, respectively.
Resumo:
In this brief, a new complex-valued B-spline neural network is introduced in order to model the complex-valued Wiener system using observational input/output data. The complex-valued nonlinear static function in the Wiener system is represented using the tensor product from two univariate B-spline neural networks, using the real and imaginary parts of the system input. Following the use of a simple least squares parameter initialization scheme, the Gauss-Newton algorithm is applied for the parameter estimation, which incorporates the De Boor algorithm, including both the B-spline curve and the first-order derivatives recursion. Numerical examples, including a nonlinear high-power amplifier model in communication systems, are used to demonstrate the efficacy of the proposed approaches.
Resumo:
In 2007, the world reached the unprecedented milestone of half of its people living in cities, and that proportion is projected to be 60% in 2030. The combined effect of global climate change and rapid urban growth, accompanied by economic and industrial development, will likely make city residents more vulnerable to a number of urban environmental problems, including extreme weather and climate conditions, sea-level rise, poor public health and air quality, atmospheric transport of accidental or intentional releases of toxic material, and limited water resources. One fundamental aspect of predicting the future risks and defining mitigation strategies is to understand the weather and regional climate affected by cities. For this reason, dozens of researchers from many disciplines and nations attended the Urban Weather and Climate Workshop.1 Twenty-five students from Chinese universities and institutes also took part. The presentations by the workshop's participants span a wide range of topics, from the interaction between the urban climate and energy consumption in climate-change environments to the impact of urban areas on storms and local circulations, and from the impact of urbanization on the hydrological cycle to air quality and weather prediction.
Resumo:
Many communication signal processing applications involve modelling and inverting complex-valued (CV) Hammerstein systems. We develops a new CV B-spline neural network approach for efficient identification of the CV Hammerstein system and effective inversion of the estimated CV Hammerstein model. Specifically, the CV nonlinear static function in the Hammerstein system is represented using the tensor product from two univariate B-spline neural networks. An efficient alternating least squares estimation method is adopted for identifying the CV linear dynamic model’s coefficients and the CV B-spline neural network’s weights, which yields the closed-form solutions for both the linear dynamic model’s coefficients and the B-spline neural network’s weights, and this estimation process is guaranteed to converge very fast to a unique minimum solution. Furthermore, an accurate inversion of the CV Hammerstein system can readily be obtained using the estimated model. In particular, the inversion of the CV nonlinear static function in the Hammerstein system can be calculated effectively using a Gaussian-Newton algorithm, which naturally incorporates the efficient De Boor algorithm with both the B-spline curve and first order derivative recursions. The effectiveness of our approach is demonstrated using the application to equalisation of Hammerstein channels.
Resumo:
Scene classification based on latent Dirichlet allocation (LDA) is a more general modeling method known as a bag of visual words, in which the construction of a visual vocabulary is a crucial quantization process to ensure success of the classification. A framework is developed using the following new aspects: Gaussian mixture clustering for the quantization process, the use of an integrated visual vocabulary (IVV), which is built as the union of all centroids obtained from the separate quantization process of each class, and the usage of some features, including edge orientation histogram, CIELab color moments, and gray-level co-occurrence matrix (GLCM). The experiments are conducted on IKONOS images with six semantic classes (tree, grassland, residential, commercial/industrial, road, and water). The results show that the use of an IVV increases the overall accuracy (OA) by 11 to 12% and 6% when it is implemented on the selected and all features, respectively. The selected features of CIELab color moments and GLCM provide a better OA than the implementation over CIELab color moment or GLCM as individuals. The latter increases the OA by only ∼2 to 3%. Moreover, the results show that the OA of LDA outperforms the OA of C4.5 and naive Bayes tree by ∼20%. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.8.083690]
Resumo:
We apply a numerical model of time-dependent ionospheric convection to two directly driven reconnection pulses during a 15-min interval of southward IMF on 26 November 2000. The model requires an input magnetopause reconnection rate variation, which is here derived from the observed variation in the upstream IMF clock angle, q. The reconnection rate is mapped to an ionospheric merging gap, the MLT extent of which is inferred from the Doppler-shifted Lyman-a emission on newly opened field lines, as observed by the FUV instrument on the IMAGE spacecraft. The model is used to reproduce a variety of features observed during this event: SuperDARN observations of the ionospheric convection pattern and transpolar voltage; FUV observations of the growth of patches of newly opened flux; FUVand in situ observations of the location of the Open-Closed field line Boundary (OCB) and a cusp ion step. We adopt a clock angle dependence of the magnetopause reconnection electric field, mapped to the ionosphere, of the form Enosin4(q/2) and estimate the peak value, Eno, by matching observed and modeled variations of both the latitude, LOCB, of the dayside OCB (as inferred from the equatorward edge of cusp proton emissions seen by FUV) and the transpolar voltage FPC (as derived using the mapped potential technique from SuperDARN HF radar data). This analysis also yields the time constant tOCB with which the open-closed boundary relaxes back toward its equilibrium configuration. For the case studied here, we find tOCB = 9.7 ± 1.3 min, consistent with previous inferences from the observed response of ionospheric flow to southward turnings of the IMF. The analysis confirms quantitatively the concepts of ionospheric flow excitation on which the model is based and explains some otherwise anomalous features of the cusp precipitation morphology.
Resumo:
Accurate estimates of how soil water stress affects plant transpiration are crucial for reliable land surface model (LSM) predictions. Current LSMs generally use a water stress factor, β, dependent on soil moisture content, θ, that ranges linearly between β = 1 for unstressed vegetation and β = 0 when wilting point is reached. This paper explores the feasibility of replacing the current approach with equations that use soil water potential as their independent variable, or with a set of equations that involve hydraulic and chemical signaling, thereby ensuring feedbacks between the entire soil–root–xylem–leaf system. A comparison with the original linear θ-based water stress parameterization, and with its improved curvi-linear version, was conducted. Assessment of model suitability was focused on their ability to simulate the correct (as derived from experimental data) curve shape of relative transpiration versus fraction of transpirable soil water. We used model sensitivity analyses under progressive soil drying conditions, employing two commonly used approaches to calculate water retention and hydraulic conductivity curves. Furthermore, for each of these hydraulic parameterizations we used two different parameter sets, for 3 soil texture types; a total of 12 soil hydraulic permutations. Results showed that the resulting transpiration reduction functions (TRFs) varied considerably among the models. The fact that soil hydraulic conductivity played a major role in the model that involved hydraulic and chemical signaling led to unrealistic values of β, and hence TRF, for many soil hydraulic parameter sets. However, this model is much better equipped to simulate the behavior of different plant species. Based on these findings, we only recommend implementation of this approach into LSMs if great care with choice of soil hydraulic parameters is taken