22 resultados para lambda-carrageenan
Resumo:
The lithium salt of the anionic SPS pincer ligand composed of a central hypervalent lambda(4)-phosphinine ring bearing two ortho-positioned diphenylphosphine sulfide side arms reacts with [Mn(CO)(5)Br] to give fac-[Mn(SPS)(CO)(3)], This isomer can be converted photochemicaily to mer-[Mn(SPS)(CO)(3)], with a very high quantum yield (0.80 +/- 0.05). The thermal backreaction is slow (taking ca. 8 h at room temperature), in contrast to rapid electrodecatalyzed mer-to-fac isomerization triggered by electrochemical reduction of mer-[Mn(SPS)(CO)(3)]. Both geometric isomers of [Mn(SPS)(CO)(3)] have been characterized by X-ray crystallography. Both isomers show luminescence from a low-lying (IL)-I-3 (SPS-based) excited state. The light emission of fac-[Mn(SPS)(CO)(3)] is largely quenched by the efficient photoisomerization occurring probably from a low-lying Mn-CO dissociative excited state. Density functional theory (DFT) and time-dependent DFT calculations describe the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of fac- and mer-[Mn(CO)(3)(SPS)] as ligand-centered orbitals, largely localized on the phosphinine ring of the SPS pincer ligand. In line with the ligand nature of its frontier orbitals, fac-[Mn(SPS)(CO)(3)] is electrochemically reversibly oxidized and reduced to the corresponding radical cation and anion, respectively. The spectroscopic (electron paramagnetic resonance, IR, and UV-vis) characterization of the radical species provides other evidence for the localization of the redox steps on the SIPS ligand. The smaller HOMO-LUMO energy difference in the case of mer-[Mn(CO)(3)(SPS)], reflected in the electronic absorption and emission spectra, corresponds with its lower oxidation potential compared to that of the fac isomer. The thermodynamic instability of mer-[Mn(CO)(3)(SPS)], confirmed by the DFT calculations, increases upon one-electron reduction and oxidation of the complex.
Resumo:
Electrochemical and photochemical properties of the tetrahedral cluster [Ru3Ir(mu(3)-H)(CO)(13)] were studied in order to prove whether the previously established thermal conversion of this cluster into the hydrogenated derivative [Ru3Ir(mu-H)(3)(CO)(12)] also occurs by means of redox or photochemical activation. Two-electron reduction of [Ru3Ir(mu(3)-H)(CO)(13)] results in the loss of CO and concomitant formation of the dianion [Ru3Ir(mu(3)-H)(CO)(12)](2-). The latter reduction product is stable in CH2Cl2 at low temperatures but becomes partly protonated above 283 K into the anion [Ru3Ir(mu-H)(2)(CO)(12)](-) by traces of water. The dianion [Ru3Ir(mu(3)-H)(CO)(12)](2-) is also the product of the electrochemical reduction of [Ru3Ir(mu-H)(3)(CO)(12)] accompanied by the loss of H-2. Stepwise deprotonation of [Ru3Ir(mu-H)(3)(CO)(12)] with Et4NOH yields [Ru3Ir(mu-H)(2)(CO)(12)](-) and [Ru3Ir(mu(3)-H)(CO)(12)](2-). Reverse protonation of the anionic clusters can be achieved, e. g., with trifluoromethylsulfonic acid. Thus, the electrochemical conversion of [Ru3Ir(mu(3)-H)(CO)(13)] into [Ru3Ir(mu-H)(3)(CO)(12)] is feasible, demanding separate two-electron reduction and protonation steps. Irradiation into the visible absorption band of [Ru3Ir(mu3-H)(CO)(13)] in hexane does not induce any significant photochemical conversion. Irradiation of this cluster in the presence of CO with lambda(irr) > 340 nm, however, triggers its efficient photofragmentation into reactive unsaturated ruthenium and iridium carbonyl fragments. These fragments are either stabilised by dissolved CO or undergo reclusterification to give homonuclear clusters. Most importantly, in H-2-saturated hexane, [Ru3Ir(mu(3)-H)(CO)(13)] converts selectively into the [Ru3Ir(mu-H)(3)(CO)(12)] photoproduct. This conversion is particularly efficient at lambda(irr) > 340 nm.
Resumo:
Shiga toxin producing Escherichia coli (STEC) strains are foodborne pathogens whose ability to produce Shiga toxin (Stx) is due to the integration of Stx-encoding lambdoid bacteriophage (Stx phage). Circulating, infective Stx phages are very difficult to isolate, purify and propagate such that there is no information on their genetic composition and properties. Here we describe a novel approach that exploits the phage's ability to infect their host and form a lysogen, thus enabling purification of Stx phages by a series of sequential lysogen isolation and induction steps. A total of 15 Stx phages were rigorously purified from water samples in this way, classified by TEM and genotyped using a PCR-based multi-loci characterisation system. Each phage possessed only one variant of each target gene type, thus confirming its purity, with 9 of the 15 phages possessing a short tail-spike gene and identified by TEM as Podoviridae. The remaining 6 phages possessed long tails, four of which appeared to be contractile in nature (Myoviridae) and two of which were morphologically very similar to bacteriophage lambda (Siphoviridae).
Resumo:
The Salmonella enterica serovar Typhi CT18 (S. Typhi) chromosome harbours seven distinct prophage-like elements, some of which may encode functional bacteriophages. In silico analyses were used to investigate these regions in S. Typhi CT18, and ultimately compare these integrated bacteriophages against 40 other Salmonella isolates using DNA microarray technology. S. Typhi CT18 contains prophages that show similarity to the lambda, Mu, P2 and P4 bacteriophage families. When compared to other S. Typhi isolates, these elements were generally conserved, supporting a clonal origin of this serovar. However, distinct variation was detected within a broad range of Salmonella serovars; many of the prophage regions are predicted to be specific to S. Typhi. Some of the P2 family prophage analysed have the potential to carry non-essential "cargo" genes within the hyper-variable tail region, an observation that suggests that these bacteriophage may confer a level of specialisation on their host. Lysogenic bacteriophages therefore play a crucial role in the generation of genetic diversity within S. enterica. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The magnetization properties of aggregated ferrofluids are calculated by combining the chain formation model developed by Zubarev with the modified mean-field theory. Using moderate assumptions for the inter- and intrachain interactions we obtain expressions for the magnetization and initial susceptibility. When comparing the results of our theory to molecular dynamics simulations of the same model we find that at large dipolar couplings (lambda>3) the chain formation model appears to give better predictions than other analytical approaches. This supports the idea that chain formation is an important structural ingredient of strongly interacting dipolar particles.
Resumo:
The many-body effect in the kinetic responses of ER fluids is studied by a molecular-dynamic simulation method. The mutual polarization effects of the particles are considered by self-consistently calculating the dipole strength on each particle according to the external field and the dipole field due to all the other particles in the fluids. The many-body effect is found to increase with the enhancement of the particle concentration and the permittivity ratio between the solvent and the particles. The calculated response times are shorter than that predicted with the 'point-dipole' model and agree very well with experimental results. The many-body effect enhances the shear stresses of the fluids by several times. But they are not proportional to the many-body correction factor lambda as expected. This is due to the fact that larger interaction forces between the particles lead to coarsening of the fibers formed in the suspensions. The results show that the many-body and multipolar interaction between the particles must be treated comprehensively in the simulations in order to get more reliable results.
Resumo:
Photosensitized oxidation of guanine is an important route to DNA damage. Ruthenium polypyridyls are very useful photosensitizers as their reactivity and DNA-binding properties are readily tunable. Here we show a strong difference in the reactivity of the two enantiomers of [Ru(TAP)2(dppz)]2+, by using time-resolved visible and IR spectroscopy. This reveals that the photosensitized one-electron oxidation of guanine in three oligonucleotide sequences proceeds with similar rates and yields for bound delta-[Ru(TAP)2(dppz)]2+, whereas those for the lambda enantiomer are very sensitive to base sequence. It is proposed that these differences are due to preferences of each enantiomer for different binding sites in the duplex.