45 resultados para inhibitory effects
Resumo:
Levetiracetam (LEV) is a prominent antiepileptic drug (AED) which binds to neuronal synaptic vesicle glycoprotein 2A (SV2A) protein and has reported effects on ion channels, but retains a poorly-defined mechanism of action. Here, we investigate inhibition of voltage-dependent Ca2+ (CaV) channels as a potential mechanism by which LEV imparts effects on neuronal activity. We used electrophysiological methods to investigate the effects of LEV on cholinergic synaptic transmission and CaV channel activity in superior cervical ganglion neurons (SCGNs). In parallel, we investigated effects of the LEV ‘inactive’ R-enantiomer, UCB L060. Thus, LEV, but not UCB L060 (each 100 μM), inhibited synaptic transmission between SCGNs in long-term culture in a time-dependent manner, significantly reducing excitatory postsynaptic potentials (EPSP) following ≥30 min application. In isolated SCGNs, LEV pretreatment (≥1 h), but not acute (5 min) application, significantly inhibited whole-cell IBa amplitude. In current clamp recordings, LEV reduced the amplitude of the afterhyperpolarizing potential (AHP) in a Ca2+-dependent manner, but also increased action potential (AP) latency in a Ca2+-independent manner, suggesting further mechanisms associated with reduced excitability. Intracellular LEV application (4-5 min) caused a rapid inhibition of IBa amplitude to an extent comparable to that seen following extracellular LEV pretreatment ( ≥ 1 h). Neither pretreatment nor intracellular application of UCB L060 produced any inhibitory effects on IBa amplitude. These results identify a stereospecific intracellular pathway by which LEV inhibits presynaptic CaV channels; resultant reductions in neuronal excitability are proposed to contribute to the anticonvulsant effects of LEV.
Resumo:
Snaclecs are small non-enzymatic proteins present in viper venoms reported to modulate haemostasis of victims through effects on platelets, vascular endothelial and smooth muscle cells. In this study, we have isolated and functionally characterised a snaclec which we named rhinocetin from the venom of West African gaboon viper, Bitis gabonica rhinoceros. Rhinocetin was shown to comprise α and β chains with the molecular masses of 13.5 and 13kDa respectively. Sequence and immunoblot analysis of rhinocetin confirmed this to be a novel snaclec. Rhinocetin inhibited collagen-stimulated activation of human platelets in dose dependent manner, but displayed no inhibitory effects on glycoprotein VI (collagen receptor) selective agonist, CRP-XL-, ADP- or thrombin-induced platelet activation. Rhinocetin antagonised the binding of monoclonal antibodies against the α2 subunit of integrin α2β1 to platelets and coimmunoprecipitation analysis confirmed integrin α2β1 as a target for this venom protein. Rhinocetin inhibited a range of collagen induced platelet functions such as fibrinogen binding, calcium mobilisation, granule secretion, aggregation and thrombus formation. It also inhibited integrin α2β1 dependent functions of human endothelial cells. Together, our data suggest rhinocetin to be a modulator of integrin α2β1 function and thus may provide valuable insights into the role of this integrin in physiological and pathophysiological scenarios including haemostasis, thrombosis and envenomation.
Resumo:
Small, synthetic peptides based on specific regions of voltage-gated Ca2+ channels (VGCCs) have been widely used to study Ca2+ channel function and have been instrumental in confirming the contribution of specific amino acid sequences to interactions with putative binding partners. In particular, peptides based on the Ca2+ channel Alpha Interaction Domain (AID) on the intracellular region connecting domains I and II (the I-II loop) and the SYNaptic PRotein INTerction (synprint) site on the II-III loop have been widely used. Emerging evidence suggests that such peptides may themselves possess inherent functionality, a property that may be exploitable for future drug design. Here, we review our recent work using synthetic Ca2+ channel peptides based on sequences within the CaV2.2 amino terminal and I-II loop, originally identified as molecular determinates for G protein modulation, and their effects on VGCC function. These CaV2.2 peptides act as inhibitory modules to decrease Ca2+ influx with direct effects on VGCC gating, ultimately leading to a reduction of synaptic transmission. CaV2.2 peptides also attenuate G protein modulation of VGCCs. Amino acid substitutions generate CaV2.2 peptides with increased or decreased inhibitory effects suggesting that synthetic peptides can be used to further probe VGCC function and, potentially, form the basis for novel therapeutic development.
Resumo:
Statins are widely prescribed cholesterol-lowering drugs that are a first-line treatment for coronary artery disease and atherosclerosis, reducing the incidence of thrombotic events such as myocardial infarction and stroke. Statins have been shown to reduce platelet activation, although the mechanism(s) through which this occurs is unclear. Since several of the characteristic effects of statins on platelets are shared with those elicited by the inhibitory platelet adhesion receptor PECAM-1, we investigated a potential connection between the influence of statins on platelet function and PECAM-1 signalling. Statins were found to inhibit a range of platelet functional responses and thrombus formation in vitro and in vivo. Notably, these effects of statins on platelet function in vitro and in vivo were diminished in PECAM-1-/- platelets. Activation of PECAM-1 signalling results in its tyrosine phosphorylation, the recruitment and activation of tyrosine phosphatase SHP-2, the subsequent binding of phosphoinositol 3-kinase (PI3-K) and diminished PI3-K signalling. Statins resulted in the stimulation of these events, leading to the inhibition of Akt activation. Together, these data provides evidence for a fundamental role of PECAM-1 in the inhibitory effects of statins on platelet activation, which may explain some of the pleiotropic actions of these drugs.
Resumo:
We describe a fluorometric assay for heme synthetase, the enzyme that is genetically deficient in erythropoietic protoporphyria. The method, which can readily detect activity in 1 microliter of packed human lymphocytes, is based on the formation of zinc protoheme from protoporphyrin IX. That zinc chelatase and ferrochelatase activities reside in the same enzyme was shown by the competitive action of ferrous ions and the inhibitory effects of N-methyl protoporphyrin (a specific inhibitor of heme synthetase) on zinc chelatase. The Km for zinc was 11 micrograms and that for protoporphyrin IX was 6 microM. The Ki fro ferrous ions was 14 microM. Zinc chelatase was reduced to 15.3% of the mean control activity in lymphocytes obtained from patients with protoporphyria, thus confirming the defect of heme biosynthesis in this disorder. The assay should prove to be useful for determining heme synthetase in tissues with low specific activity and to investigate further the enzymatic defect in protoporphyria.
Resumo:
The inhibitory effects of toxin-producing phytoplankton (TPP) on zooplankton modulate the dynamics of marine plankton. In this article, we employ simple mathematical models to compare theoretically the dynamics of phytoplankton–zooplankton interaction in situations where the TPP are present with those where TPP are absent. We consider two sets of three-component interaction models: one that does not include the effect of TPP and the other that does. The negative effects of TPP on zooplankton is described by a non-linear interaction term. Extensive theoretical analyses of the models have been performed to understand the qualitative behaviour of the model systems around every possible equilibria. The results of local-stability analysis and numerical simulations demonstrate that the two model-systems differ qualitatively with regard to oscillations and stability. The model system that does not include TPP is asymptotically stable around the coexisting equilibria, whereas, the system that includes TPP oscillates for a range of parametric values associated with toxin-inhibition rate and competition coefficients. Our analysis suggests that the qualitative dynamics of the plankton–zooplankton interactions are very likely to alter due to the presence of TPP species, and therefore the effects of TPP should be considered carefully while modelling plankton dynamics.
Memory suppression can help people “unlearn” behavioral responses—but only for nonemotional memories
Resumo:
When encountering reminders of memories that we prefer not to think about, we often try to exclude those memories from awareness. Past studies have revealed that such suppression attempts can reduce the subsequent recollection of unwanted memories. In the present study, we examined whether the inhibitory effects extend even to associated behavioral responses. Participants learned cue–target pairs for emotional and nonemotional targets and were additionally trained in behavioral responses for each cue. Afterward, they were shown the cues and instructed either to think or to avoid thinking about the targets without performing any behaviors. In a final test phase, behavioral performance was tested for all of the cues. When the targets were neutral, participants’ attempts to avoid retrieval reduced accuracy and increased reaction times in generating behavioral responses associated with cues. By contrast, behavioral performance was not affected by suppression attempts when the targets were emotional. These results indicate that controlling unwanted recollection is powerful enough to inhibit associated behavioral responses—but only for nonemotional memories.
Resumo:
According to dual-system accounts of English past-tense processing, regular forms are decomposed into their stem and affix (played=play+ed) based on an implicit linguistic rule, whereas irregular forms (kept) are retrieved directly from the mental lexicon. In second language (L2) processing research, it has been suggested that L2 learners do not have rule-based decomposing abilities, so they process regular past-tense forms similarly to irregular ones (Silva & Clahsen 2008), without applying the morphological rule. The present study investigates morphological processing of regular and irregular verbs in Greek-English L2 learners and native English speakers. In a masked-priming experiment with regular and irregular prime-target verb pairs (playedplay/kept-keep), native speakers showed priming effects for regular pairs, compared to unrelated pairs, indicating decomposition; conversely, L2 learners showed inhibitory effects. At the same time, both groups revealed priming effects for irregular pairs. We discuss these findings in the light of available theories on L2 morphological processing.
Resumo:
Natural anti-parasitic compounds in plants such as condensed tannins (CT) have anthelmintic properties against a range of gastrointestinal nematodes, but for other helminths such effects are unexplored. The aim of this study was to assess the effects of CT from three different plant extracts in a model system employing the rat tapeworm, Hymenolepis diminuta, in its intermediate host, Tenebrio molitor. An in vitro study examined infectivity of H. diminuta cysticercoids (excystation success) isolated from infected beetles exposed to different concentrations of CT extracts from pine bark (PB) (Pinus sps), hazelnut pericarp (HN) (Corylus avellana) or white clover flowers (WC) (Trifolium repens), in comparison with the anthelmintic drug praziquantel (positive control). In the in vitro study, praziquantel and CT from all three plant extracts had dose-dependent inhibitory effects on cysticercoid excystation. The HN extract was most effective at inhibiting excystation, followed by PB and WC. An in vivo study was carried out on infected beetles (measured as cysticercoid establishment) fed different doses of PB, HN and praziquantel. There was a highly significant inhibitory effect of HN on cysticercoid development (p = 0.0002). Overall, CT showed a promising anti-cestodal effect against the metacestode stage of H. diminuta.
Resumo:
Recently, probiotic fermented milk products have raised interest regarding their potential anti-hypertensive activity mainly due to the production of angiotensin-I-converting enzyme (ACE) inhibitory peptides. Ionic calcium released upon milk acidification during fermentation is also known to exert hypotensive activity. Thus, the main aim of this study was to screen probiotic strains for their ability to induce ACE-inhibitory activity upon fermentation of milk. The relationship of ACE-inhibitory activity percentage (ACEi%) with cell growth, pH, degree of hydrolysis and the concentration of ionic calcium released during the fermentation was also investigated. Compared with other lactic acid bacteria, Lactobacillus casei YIT 9029 and Bifidobacterium bifidum MF 20/5 were able to induce strong ACE-inhibitory activity. Furthermore, it was found that the ionic calcium released during milk fermentation could contribute to the ACE-inhibitory activity. These findings will contribute to the development of new probiotic dairy products with anti-hypertensive activity.
Resumo:
BACKGROUND AND PURPOSE: We have recently shown that the phytocannabinoid Delta9-tetrahydrocannabivarin (Delta9-THCV) and the CB1 receptor antagonist AM251 increase inhibitory neurotransmission in mouse cerebellum and also exhibit anticonvulsant activity in a rat piriform cortical (PC) model of epilepsy. Possible mechanisms underlying cannabinoid actions in the CNS include CB1 receptor antagonism (by displacing endocannabinergic tone) or inverse agonism at constitutively active CB1 receptors. Here, we investigate the mode of cannabinoid action in [35S]GTPgammaS binding assays. EXPERIMENTAL APPROACH: Effects of Delta9-THCV and AM251 were tested either alone or against WIN55,212-2-induced increases in [35S]GTPgammaS binding in mouse cerebellar and PC membranes. Effects on non-CB receptor expressing CHO-D2 cell membranes were also investigated. KEY RESULTS :Delta9-THCV and AM251 both acted as potent antagonists of WIN55,212-2-induced increases in [35S]GTPgammaS binding in cerebellar and PC membranes (Delta9-THCV: pA2=7.62 and 7.44 respectively; AM251: pA2=9.93 and 9.88 respectively). At micromolar concentrations, Delta9-THCV or AM251 alone caused significant decreases in [35S]GTPgammaS binding; Delta9-THCV caused larger decreases than AM251. When applied alone in CHO-D2 membranes, Delta9-THCV and AM251 also caused concentration-related decreases in G protein activity. CONCLUSIONS AND IMPLICATIONS: Delta9-THCV and AM251 act as CB1 receptors antagonists in the cerebellum and PC, with AM251 being more potent than Delta9-THCV in both brain regions. Individually, Delta9-THCV or AM251 exhibited similar potency at CB1 receptors in the cerebellum and the PC. At micromolar concentrations, Delta9-THCV and AM251 caused a non-CB receptor-mediated depression of basal [35S]GTPgammaS binding.
Resumo:
Background and purposeThe phytocannabinoid Delta(9)-tetrahydrocannabivarin (Delta(9)-THCV) has been reported to exhibit a diverse pharmacology; here, we investigate functional effects of Delta(9)-THCV, extracted from Cannabis sativa, using electrophysiological techniques to define its mechanism of action in the CNS.Experimental approachEffects of Delta(9)-THCV and synthetic cannabinoid agents on inhibitory neurotransmission at interneurone-Purkinje cell (IN-PC) synapses were correlated with effects on spontaneous PC output using single-cell and multi-electrode array (MEA) electrophysiological recordings respectively, in mouse cerebellar brain slices in vitro.Key resultsThe cannabinoid receptor agonist WIN 55,212-2 (WIN55) decreased miniature inhibitory postsynaptic current (mIPSC) frequency at IN-PC synapses. WIN55-induced inhibition was reversed by Delta(9)-THCV, and also by the CB(1) receptor antagonist AM251; Delta(9)-THCV or AM251 acted to increase mIPSC frequency beyond basal values. When applied alone, Delta(9)-THCV, AM251 or rimonabant increased mIPSC frequency. Pre-incubation with Delta(9)-THCV blocked WIN55-induced inhibition. In MEA recordings, WIN55 increased PC spike firing rate; Delta(9)-THCV and AM251 acted in the opposite direction to decrease spike firing. The effects of Delta(9)-THCV and WIN55 were attenuated by the GABA(A) receptor antagonist bicuculline methiodide.Conclusions and implicationsWe show for the first time that Delta(9)-THCV acts as a functional CB(1) receptor antagonist in the CNS to modulate inhibitory neurotransmission at IN-PC synapses and spontaneous PC output. Delta(9)-THCV- and AM251-induced increases in mIPSC frequency beyond basal levels were consistent with basal CB(1) receptor activity. WIN55-induced increases in PC spike firing rate were consistent with synaptic disinhibition; whilst Delta(9)-THCV- and AM251-induced decreases in spike firing suggest a mechanism of PC inhibition.British Journal of Pharmacology advance online publication, 3 March 2008; doi:10.1038/bjp.2008.57.
Resumo:
Background and purpose: Carisbamate is being developed for adjuvant treatment of partial onset epilepsy. Carisbamate produces anticonvulsant effects in primary generalized, complex partial and absence-type seizure models, and exhibits neuroprotective and antiepileptogenic properties in rodent epilepsy models. Phase IIb clinical trials of carisbamate demonstrated efficacy against partial onset seizures; however, its mechanisms of action remain unknown. Here, we report the effects of carisbamate on membrane properties, evoked and spontaneous synaptic transmission and induced epileptiform discharges in layer II-III neurones in piriform cortical brain slices. Experimental approach: Effects of carisbamate were investigated in rat piriform cortical neurones by using intracellular electrophysiological recordings. Key results: Carisbamate (50–400 mmol·L-1) reversibly decreased amplitude, duration and rise-time of evoked action potentials and inhibited repetitive firing, consistent with use-dependent Na+ channel block; 150–400 mmol·L-1 carisbamate reduced neuronal input resistance, without altering membrane potential. After microelectrode intracellular Cl- loading, carisbamate depolarized cells, an effect reversed by picrotoxin. Carisbamate (100–400 mmol·L-1) also selectively depressed lateral olfactory tract-afferent evoked excitatory synaptic transmission (opposed by picrotoxin), consistent with activation of a presynaptic Cl conductance. Lidocaine (40–320 mmol·L-1) mimicked carisbamate, implying similar modes of action. Carisbamate (300–600 mmol·L-1) had no effect on spontaneous GABAA miniature inhibitory postsynaptic currents and at lower concentrations (50–200 mmol·L-1) inhibited Mg2+-free or 4-aminopyridine-induced seizure-like discharges. Conclusions and implications: Carisbamate blocked evoked action potentials use-dependently, consistent with a primary action on Na+ channels and increased Cl- conductances presynaptically and, under certain conditions, postsynaptically to selectively depress excitatory neurotransmission in piriform cortical layer Ia-afferent terminals.
Resumo:
Abnormal vascular smooth muscle cell (VSMC) proliferation plays an important role in the pathogenesis of both atherosclerosis and restenosis. Recent studies suggest that high-dose salicylates, in addition to inhibiting cyclooxygenase activity, exert an antiproliferative effect on VSMC growth both in-vitro and in-vivo. However, whether all non-steroidal anti-inflammatory drugs (NSAIDs) exert similar anti proliferative effects on VSMCs, and do so via a common mechanism of action, remains to be shown. In this study, we demonstrate that the NSAIDs aspirin, sodium salicylate, diclofenac, ibuprofen, indometacin and sulindac induce a dose-dependent inhibition of proliferation in rat A10 VSMCs in the absence of significant cytotoxicity. Flow cytometric analyses showed that exposure of A10 cells to diclofenac, indometacin, ibuprofen and sulindac, in the presence of the mitotic inhibitor, nocodazole, led to a significant G0/G1 arrest. In contrast, the salicylates failed to induce a significant G1 arrest since flow cytometry profiles were not significantly different from control cells. Cyclin A levels were elevated, and hyperphosphorylated p107 was present at significant levels, in salicylate-treated A10 cells, consistent with a post-G1/S block, whereas cyclin A levels were low, and hypophosphorylated p107 was the dominant form, in cells treated with other NSAIDs consistent with a G1 arrest. The ubiquitously expressed cyclin-dependent kinase (CDK) inhibitors, p21 and p27, were increased in all NSAID-treated cells. Our results suggest that diclofenac, indometacin, ibuprofen and sulindac inhibit VSMC proliferation by arresting the cell cycle in the G1 phase, whereas the growth inhibitory effect of salicylates probably affects the late S and/or G2/M phases. Irrespective of mechanism, our results suggest that NSAIDs might be of benefit in the treatment of certain vasculoproliferative disorders.
Resumo:
This study used the novel approach of statistical modelling to investigate the control of hypothalamic-pituitary-adrenal (HPA) axis and quantify temporal relationships between hormones. Two experimental paradigms were chosen, insulin-induced hypoglycaemia and 2 h transport, to assess differences in control between noncognitive and cognitive stimuli. Vasopressin and corticotropin-releasing hormone (CRH) were measured in hypophysial portal plasma, and adrenocorticotropin hormone (ACTH) and cortisol in jugular plasma of conscious sheep, and deconvolution analysis was used to calculate secretory rates, before modelling. During hypoglycaemia, the relationship between plasma glucose and vasopressin or CRH was best described by log(10) transforming variables (i.e. a positive power-curve relationship). A negative-feedback relationship with log(10) cortisol concentration 2 h previously was detected. Analysis of the 'transport' stimulus suggested that the strength of the perceived stimulus decreased over time after accounting for cortisol facilitation and negative-feedback. The time course of vasopressin and CRH responses to each stimulus were different However, at the pituitary level, the data suggested that log(10) ACTH secretion rate was related to log(10) vasopressin and CRH concentrations with very similar regression coefficients and an identical ratio of actions (2.3 : 1) for both stimuli. Similar magnitude negative-feedback effects of log(10) cortisol at -110 min (hypoglycaemia) or -40 min (transport) were detected, and both models contained a stimulatory relationship with cortisol at 0 min (facilitation). At adrenal gland level, cortisol secretory rates were related to simultaneously measured untransformed ACTH concentration but the regression coefficient for the hypoglycaemia model was 2.5-fold greater than for transport. No individual sustained maximum cortisol secretion for longer than 20 min during hypoglycaemia and 40 min during transport. These unique models demonstrate that corticosteroid negative-feedback is a significant control mechanism at both the pituitary and hypothalamus. The amplitude of HPA response may be related to stimulus intensity and corticosteroid negative-feedback, while duration depended on feedback alone.