113 resultados para inference algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asynchronous Optical Sampling (ASOPS) [1,2] and frequency comb spectrometry [3] based on dual Ti:saphire resonators operated in a master/slave mode have the potential to improve signal to noise ratio in THz transient and IR sperctrometry. The multimode Brownian oscillator time-domain response function described by state-space models is a mathematically robust framework that can be used to describe the dispersive phenomena governed by Lorentzian, Debye and Drude responses. In addition, the optical properties of an arbitrary medium can be expressed as a linear combination of simple multimode Brownian oscillator functions. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing the recorded THz transients in the time or frequency domain will be outlined [4,5]. Since a femtosecond duration pulse is capable of persistent excitation of the medium within which it propagates, such approach is perfectly justifiable. Several de-noising routines based on system identification will be shown. Furthermore, specifically developed apodization structures will be discussed. These are necessary because due to dispersion issues, the time-domain background and sample interferograms are non-symmetrical [6-8]. These procedures can lead to a more precise estimation of the complex insertion loss function. The algorithms are applicable to femtosecond spectroscopies across the EM spectrum. Finally, a methodology for femtosecond pulse shaping using genetic algorithms aiming to map and control molecular relaxation processes will be mentioned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rate at which a given site in a gene sequence alignment evolves over time may vary. This phenomenon-known as heterotachy-can bias or distort phylogenetic trees inferred from models of sequence evolution that assume rates of evolution are constant. Here, we describe a phylogenetic mixture model designed to accommodate heterotachy. The method sums the likelihood of the data at each site over more than one set of branch lengths on the same tree topology. A branch-length set that is best for one site may differ from the branch-length set that is best for some other site, thereby allowing different sites to have different rates of change throughout the tree. Because rate variation may not be present in all branches, we use a reversible-jump Markov chain Monte Carlo algorithm to identify those branches in which reliable amounts of heterotachy occur. We implement the method in combination with our 'pattern-heterogeneity' mixture model, applying it to simulated data and five published datasets. We find that complex evolutionary signals of heterotachy are routinely present over and above variation in the rate or pattern of evolution across sites, that the reversible-jump method requires far fewer parameters than conventional mixture models to describe it, and serves to identify the regions of the tree in which heterotachy is most pronounced. The reversible-jump procedure also removes the need for a posteriori tests of 'significance' such as the Akaike or Bayesian information criterion tests, or Bayes factors. Heterotachy has important consequences for the correct reconstruction of phylogenies as well as for tests of hypotheses that rely on accurate branch-length information. These include molecular clocks, analyses of tempo and mode of evolution, comparative studies and ancestral state reconstruction. The model is available from the authors' website, and can be used for the analysis of both nucleotide and morphological data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Varroa destructor is a parasitic mite of the Eastern honeybee Apis cerana. Fifty years ago, two distinct evolutionary lineages (Korean and Japanese) invaded the Western honeybee Apis mellifera. This haplo-diploid parasite species reproduces mainly through brother sister matings, a system which largely favors the fixation of new mutations. In a worldwide sample of 225 individuals from 21 locations collected on Western honeybees and analyzed at 19 microsatellite loci, a series of de novo mutations was observed. Using historical data concerning the invasion, this original biological system has been exploited to compare three mutation models with allele size constraints for microsatellite markers: stepwise (SMM) and generalized (GSM) mutation models, and a model with mutation rate increasing exponentially with microsatellite length (ESM). Posterior probabilities of the three models have been estimated for each locus individually using reversible jump Markov Chain Monte Carlo. The relative support of each model varies widely among loci, but the GSM is the only model that always receives at least 9% support, whatever the locus. The analysis also provides robust estimates of mutation parameters for each locus and of the divergence time of the two invasive lineages (67,000 generations with a 90% credibility interval of 35,000-174,000). With an average of 10 generations per year, this divergence time fits with the last post-glacial Korea Japan land separation. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Event-related functional magnetic resonance imaging (efMRI) has emerged as a powerful technique for detecting brains' responses to presented stimuli. A primary goal in efMRI data analysis is to estimate the Hemodynamic Response Function (HRF) and to locate activated regions in human brains when specific tasks are performed. This paper develops new methodologies that are important improvements not only to parametric but also to nonparametric estimation and hypothesis testing of the HRF. First, an effective and computationally fast scheme for estimating the error covariance matrix for efMRI is proposed. Second, methodologies for estimation and hypothesis testing of the HRF are developed. Simulations support the effectiveness of our proposed methods. When applied to an efMRI dataset from an emotional control study, our method reveals more meaningful findings than the popular methods offered by AFNI and FSL. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ranald Roderick Macdonald (1945-2007) was an important contributor to mathematical psychology in the UK, as a referee and action editor for British Journal of Mathematical and Statistical Psychology and as a participant and organizer at the British Psychological Society's Mathematics, statistics and computing section meetings. This appreciation argues that his most important contribution was to the foundations of significance testing, where his concern about what information was relevant in interpreting the results of significance tests led him to be a persuasive advocate for the 'Weak Fisherian' form of hypothesis testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The utility of an "ecologically rational" recognition-based decision rule in multichoice decision problems is analyzed, varying the type of judgment required (greater or lesser). The maximum size and range of a counterintuitive advantage associated with recognition-based judgment (the "less-is-more effect") is identified for a range of cue validity values. Greater ranges of the less-is-more effect occur when participants are asked which is the greatest of to choices (m > 2) than which is the least. Less-is-more effects also have greater range for larger values of in. This implies that the classic two-altemative forced choice task, as studied by Goldstein and Gigerenzer (2002), may not be the most appropriate test case for less-is-more effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of ignorance-driven decision making have been employed to analyse when ignorance should prove advantageous on theoretical grounds or else they have been employed to examine whether human behaviour is consistent with an ignorance-driven inference strategy (e. g., the recognition heuristic). In the current study we examine whether-under conditions where such inferences might be expected-the advantages that theoretical analyses predict are evident in human performance data. A single experiment shows that, when asked to make relative wealth judgements, participants reliably use recognition as a basis for their judgements. Their wealth judgements under these conditions are reliably more accurate when some of the target names are unknown than when participants recognize all of the names (a "less-is-more effect"). These results are consistent across a number of variations: the number of options given to participants and the nature of the wealth judgement. A basic model of recognition-based inference predicts these effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

“Fast & frugal” heuristics represent an appealing way of implementing bounded rationality and decision-making under pressure. The recognition heuristic is the simplest and most fundamental of these heuristics. Simulation and experimental studies have shown that this ignorance-driven heuristic inference can prove superior to knowledge based inference (Borges, Goldstein, Ortman & Gigerenzer, 1999; Goldstein & Gigerenzer, 2002) and have shown how the heuristic could develop from ACT-R’s forgetting function (Schooler & Hertwig, 2005). Mathematical analyses also demonstrate that, under certain conditions, a “less-is-more effect” will always occur (Goldstein & Gigerenzer, 2002). The further analyses presented in this paper show, however, that these conditions may constitute a special case and that the less-is-more effect in decision-making is subject to the moderating influence of the number of options to be considered and the framing of the question.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the latest advances in the area of advanced computer architectures we are seeing already large scale machines at petascale level and we are discussing exascale computing. All these require efficient scalable algorithms in order to bridge the performance gap. In this paper examples of various approaches of designing scalable algorithms for such advanced architectures will be given and the corresponding properties of these algorithms will be outlined and discussed. Examples will outline such scalable algorithms applied to large scale problems in the area Computational Biology, Environmental Modelling etc. The key properties of such advanced and scalable algorithms will be outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed computing paradigms for sharing resources such as Clouds, Grids, Peer-to-Peer systems, or voluntary computing are becoming increasingly popular. While there are some success stories such as PlanetLab, OneLab, BOINC, BitTorrent, and SETI@home, a widespread use of these technologies for business applications has not yet been achieved. In a business environment, mechanisms are needed to provide incentives to potential users for participating in such networks. These mechanisms may range from simple non-monetary access rights, monetary payments to specific policies for sharing. Although a few models for a framework have been discussed (in the general area of a "Grid Economy"), none of these models has yet been realised in practice. This book attempts to fill this gap by discussing the reasons for such limited take-up and exploring incentive mechanisms for resource sharing in distributed systems. The purpose of this book is to identify research challenges in successfully using and deploying resource sharing strategies in open-source and commercial distributed systems.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequency recognition is an important task in many engineering fields such as audio signal processing and telecommunications engineering, for example in applications like Dual-Tone Multi-Frequency (DTMF) detection or the recognition of the carrier frequency of a Global Positioning, System (GPS) signal. This paper will present results of investigations on several common Fourier Transform-based frequency recognition algorithms implemented in real time on a Texas Instruments (TI) TMS320C6713 Digital Signal Processor (DSP) core. In addition, suitable metrics are going to be evaluated in order to ascertain which of these selected algorithms is appropriate for audio signal processing(1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the use of pulse shaping for optimal excitation of samples in time-domain THz spectroscopy. Pulse shaping can be performed in a 4f optical system to specifications from state space models of the system's dynamics. Subspace algorithms may be used for the identification of the state space models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a multi-robot localization scenario where, for a period of time, the robot team loses communication with one of the robots due to system error. In this novel approach, extended Kalman filter (EKF) algorithms utilize relative measurements to localize the robots in space. These measurements are used to reliably compensate "dead-com" periods were no information can be exchanged between the members of the robot group.