72 resultados para human in vitro myogenesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fermentation of beta-glucan fractions from barley [average molecular mass (MM), of 243, 172, and 137 kDa] and oats (average MM of 230 and 150 kDa) by the human faecal microbiota was investigated. Fractions were supplemented to pH-controlled anaerobic batch culture fermenters inoculated with human faecal samples from three donors, in triplicate, for each substrate. Microbiota changes were monitored by fluorescent in situ hybridization; groups enumerated were: Bifidobacterium genus, Bacteroides and Prevotella group, Clostridium histolyticum subgroup, Ruminococcus-Eubacterium-Clostridium (REC) cluster, Lactobacillus-Enterococcus group, Atopobium cluster, and clostridial cluster IX. Short-chain fatty acids and lactic acid were measured by HPLC. The C. histolyticum subgroup increased significantly in all vessels and clostridial cluster IX maintained high populations with all fractions. The Bacteroides-Prevotella group increased with all but the 243-kDa barley and 230-kDa oat substrates. In general beta-glucans displayed no apparent prebiotic potential. The SCFA profile (51 : 32 : 17; acetate : propionate : butyrate) was considered propionate-rich. In a further study a beta-glucan oligosaccharide fraction was produced with a degree of polymerization of 3-4. This fraction was supplemented to small-scale faecal batch cultures and gave significant increases in the Lactobacillus-Enterococcus group; however, the prebiotic potential of this fraction was marginal compared with that of inulin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies indicate that consumption of cruciferous vegetables (CV) can reduce the risk of cancer. Supposed mechanisms are partly the inhibition of phase I and the induction of phase II enzymes. The aim of this study was to investigate in vitro and in vivo effects of watercress (WC), a member of the CV family, on chemopreventive parameters using human peripheral blood mononuclear cells (PBMC) as surrogate cells. We investigated the hypothesis that WC reduces cancer risk by inducing detoxification enzymes in a genotype-dependent manner. In vitro gene expression and enzyme activity experiments used PBMC incubated with a crude extract from fresh watercress (WCE, 0.1-10 mu L/mL with 8.2 g WC per 1 mL extract) or with one main key compound phenethyl isothiocyanate (PEITC, 1-10 mu M). From an in vivo perspective, gene expression and glutathione S-transferase (GST) polymorphisms were determined in PBMC obtained from a human intervention study in which subjects consumed 85 g WC per day for 8 weeks. The influence of WC consumption on gene expression was determined for detoxification enzymes such as superoxide dismutase 2 (SOD2) and glutathione peroxidase 1 (GPX1), whilst the SOD and GPX activities in red blood cells were also analysed with respect to GST genotypes. In vitro exposure of PBMC to WCE or PEITC (24 h) increased gene expression for both detoxification enzymes GPX1 (5.5-fold, 1 mu L/mL WCE, 3.7-fold 1 mu M PEITC) and SOD2 (12.1-fold, 10 mu L/mL WCE, 7.3-fold, 10 mu M PEITC), and increased SOD2 activity (1.9-fold, 10 mu L/mL WCE). The WC intervention had no significant effect on in vivo PBMC gene expression, as high individual variations were observed. However, a small but significant increase in GPX (p = 0.025) and SOD enzyme activity (p = 0.054) in red blood cells was observed in GSTM1*0, but not in GSTM1*1 individuals, whilst the GSTT1 genotype had no impact. The results indicate that WC is able to modulate the enzymes SOD and GPX in blood cells in vitro and in vivo, and suggest that the capacity of moderate intake of CV to induce detoxification is dependent in part on the GSTM1 genotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies in human, animal and cellular systems suggest that phenols from virgin olive oil are capable of inhibiting several stages in carcinogenesis, including metastasis. The invasion cascade comprises cell attachment to extracellular matrix components or basement membrane, degradation of basement membrane by proteolytic enzymes and migration of cells through the modified matrix. In the present study, we investigated the effect of phenolics extracted from virgin olive oil (OVP) and its main constituents: hydroxytyrosol (3,4-dihydroxyphenylethanol), tyrosol (p-hydroxyphenylethanol), pinoresinol and caffeic acid. The effects of these phenolics were tested on the invasion of HT115 human colon carcinoma cells in a Matrigel invasion assay. OVP and its compounds showed different dose-related anti-invasive effects. At 25 mu g/ml OVP and equivalent doses of individual compounds, significant anti-invasive effects were seen in the range of 45-55% of control. Importantly, OVP, but not the isolated phenolics, significantly reduced total cell number in the Matrigel invasion assay. There were no significant effects shown on cell viability, indicating the reduction of cell number in the Matrigel invasion assay was not due to cytotoxicity. There were also no significant effects on cell attachment to plastic substrate, indicating the importance of extracellular matrix in modulating the anti-invasive effects of OVP. In conclusion, the results from this study indicate that phenols from virgin olive oil have the ability to inhibit invasion of colon cancer cells and the effects may be mediated at different levels of the invasion cascade. (c) 2007 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: To determine the fermentation profiles by human gut bacteria of arabino-oligosaccharides of varying degree of polymerization. Materials and Methods: Sugar beet arabinan was hydrolyzed with a commercial pectinase and eight fractions, of varying molecular weight, were isolated by gel-filtration chromatography. Hydrolysis fractions, arabinose, arabinan and fructo-oligosaccharides were fermented anaerobically by gut bacteria. Total bacteria, bifidobacteria, bacteroides, lactobacilli and the Clostridium perfringens/histolyticum sub. grp. were enumerated using fluorescent in situ hybridization. Results: Bifidobacteria were stimulated to different extents depending on molecular weight, i.e. maximum increase in bifidobacteria after 48 h was seen on the lower molecular weight fractions. Lactobacilli fluctuated depending on the initial inoculum levels. Bacteroides numbers varied according to fraction; arabinan, arabinose and higher oligosaccharides (degree of polymerization, dp > 8) resulted in significant increases at 24 h. Only carbohydrate mixtures with dp of 1-2 resulted in significant increases at 48 h (log 8.77 +/- 0.23). Clostridia decreased on all substrates. Conclusions: Arabino-oligosaccharides can be considered as potential prebiotics. Significance and Impact of the Study: Arabinan is widely available as it is a component of sugar beet pulp, a co-product from the sugar beet industry. Generation of prebiotic functionality from arabinan would represent significant added value to a renewable resource.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated and characterised transdermal permeation of bioactive agents from a topically applied Arnica montana tincture. Permeation experiments conducted over 48 h used polyclimethylsiloxane (silastic) and human epidermal membranes mounted in Franz-type diffusion cells with a methanol-water (50:50 v/v) receptor fluid. A commercially available tincture of A. montana L. derived from dried Spanish flower heads was a donor solution. Further donor solutions prepared from this stock tincture concentrated the tincture constituents 1, 2 and 10 fold and its sesquiterpene lactones 10 fold. Permeants were assayed using a high-performance liquid chromatography method. Five components permeated through silastic membranes providing peaks with relative retention factors to an internal standard (santonin) of 0.28, 1.18, 1.45, 1.98 and 2.76, respectively. No permeant was detected within 12 h of applying the Arnica tincture onto human epidermal membranes. However, after 12 h, the first two of these components were detected. These were,shown by Zimmermann reagent reaction to be sesquiterpene lactones and liquid chromatography/diode array detection/mass spectrometry indicated that these two permeants were 11,13-dihydrohelenalin (DH) analogues (methacrylate and tiglate esters). The same two components were also detected within 3 h of topical application of the 10-fold concentrated tincture and the concentrated sesquiterpene lactone extract.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanocene compounds are a novel series of agents that exhibit cytotoxic effects in a variety of human cancer cells in vitro and in vivo. In this study, the antiproliferative activity of two titanocenes (Titanocenes X and Y) was evaluated in human epidermoid cancer cells in vitro. Titanocenes X and Y induce apoptotic cell death in epidermoid cancer cells, with IC50 values that are comparable to cisplatin. Characterisation of the cell death pathway induced by titanocene compounds in A431 cells revealed that apoptosis is preceded by cell cycle arrest and the inhibition of cell proliferation. The induction of apoptosis is dependent on the activation of caspase-3 and -7 but not caspase-8. Furthermore, the antitumour activity of Titanocene Y was tested in an A431 xenograft model of epidermoid cancer. Results indicate that Titanocene Y significantly reduced the growth of A431 xenografts with an antitumour effect similar to cisplatin. These results suggest that titanocenes represent a novel series of promising antitumour agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commensal bacteria, including some species of lactobacilli commonly present in human breast milk, appear to colonize the neonatal gut and contribute to protection against infant infections, suggesting that lactobacilli could potentially modulate immunity. In this study, we evaluated the potential of two Lactobacillus strains isolated from human milk to modulate the activation and cytokine profile of peripheral blood mononuclear cell (PBMC) subsets in vitro. Moreover, these effects were compared to the same probiotic species of non-milk origin. Lactobacillus salivarius CECT5713 and Lactobacillus fermentum CECT5716 at 105, 106 and 107 bacteria/mL were co-cultured with PBMC (106/mL) from 8 healthy donors for 24 h. Activation status (CD69 and CD25 expressions) of natural killer (NK) cells (CD56+), total T cells (CD3+), cytotoxic T cells (CD8+) and CD4+ T cells was determined by flow cytometry. Regulatory T cells (Treg) were also quantified by intracellular Foxp3 evaluation. Regarding innate immunity, NK cells were activated by addition of both Lactobacillus strains, and in particular, the CD8+ NK subset was preferentially induced to highly express CD69 (90%, p<0.05). With respect to acquired immunity, approximately 9% of CD8+ T cells became activated after co-cultivation with L. fermentum or L salivarius. Although CD4+ T cells demonstrated a weaker response, there was a preferential activation of Treg cells (CD4+CD25+Foxp3+) after exposure to both milk probiotic bacteria (p<0.05). Both strains significantly induced the production of a number of cytokines and chemokines, including TNFα, IL-1β, IL-8, MIP-1α, MIP-1β, and GM-CSF, but some strain-specific effects were apparent. This work demonstrates that L salivarius CECT5713 and L. fermentum CECT5716 enhanced both natural and acquired immune responses, as evidenced by the activation of NK and T cell subsets and the expansion of Treg cells, as well as the induction of a broad array of cytokines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is now apparent that there is a strong link between health and nutrition and this can be seen clearly when we talk of obesity. The food industry is trying to capitalise on this by adapting high sugar/fat foods to become healthier alternatives. In confectionery food ingredients can be used for a range of purposes including sucrose replacement. Many of these ingredients may also evade digestion in the upper gut and be fermented by the gut microbiota upon entering the colon. This study was designed to screen a range of ingredients and their activities on the gut microbiota. In this study we screened a range of these ingredients in triplicate batch culture fermentations with known prebiotics as controls. Changes in bacteriology were monitored using FISH. SCFA were measured by GC and gas production was assessed during anaerobic batch fermentations. Bacterial enumeration showed significant increases (P ≤ 0.05) in bifidobacteria and lactobacilli with polydextrose and most polyols with no significant increases in Clostridium histolyticum/perfringens. SCFA and gas formation indicated that the substrates added to the fermenters were being utilised by the gut microbiota. It therefore appears these ingredients exert some prebiotic activity in vitro. Further studies, particularly in human volunteers, are necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of structure and molecular weight in fermentation selectivity in linear α-1,6 dextrans and dextrans with α-1,2 branching was investigated. Fermentation by gut bacteria was determined in anaerobic, pH-controlled fecal batch cultures after 36 h. Inulin (1%, wt/vol), which is a known prebiotic, was used as a control. Samples were obtained at 0, 10, 24, and 36 h of fermentation for bacterial enumeration by fluorescent in situ hybridization and short-chain fatty acid analyses. The gas production of the substrate fermentation was investigated in non-pH-controlled, fecal batch culture tubes after 36 h. Linear and branched 1-kDa dextrans produced significant increases in Bifidobacterium populations. The degree of α-1,2 branching did not influence the Bifidobacterium populations; however, α-1,2 branching increased the dietary fiber content, implying a decrease in digestibility. Other measured bacteria were unaffected by the test substrates except for the Bacteroides-Prevotella group, the growth levels of which were increased on inulin and 6- and 70-kDa dextrans, and the Faecalibacterium prausnitzii group, the growth levels of which were decreased on inulin and 1-kDa dextrans. A considerable increase in short-chain fatty acid concentration was measured following the fermentation of all dextrans and inulin. Gas production rates were similar among all dextrans tested but were significantly slower than that for inulin. The linear 1-kDa dextran produced lower total gas and shorter time to attain maximal gas production compared to those of the 70-kDa dextran (branched) and inulin. These findings indicate that dextrans induce a selective effect on the gut flora, short-chain fatty acids, and gas production depending on their length.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in vitro fermentation selectivity of hydrolyzed caseinomacropeptide (CMP) glycosylated, via Maillard reaction (MR), with lactulose, galacto-oligosaccharides from lactose (GOSLa), and galacto-oligosaccharides from lactulose (GOSLu) was evaluated, using pH-controlled small-scale batch cultures at 37 °C under anaerobic conditions with human feces. After 10 and 24 h of fermentation, neoglyconjugates exerted a bifidogenic activity, similar to those of the corresponding prebiotic carbohydrates. No significant differences were found in Bacteroides, Lactobacillus�Enterococcus, Clostridium histolyticum subgroup, Atopobium and Clostridium coccoides�Eubacterium rectale populations. Concentrations of lactic acid and short-chain fatty acids (SCFA) produced during the fermentation of prebiotic carbohydrates were similar to those produced for their respective neoglycoconjugates at both fermentation times. These findings, joined with the functional properties attributed to CMP, could open up new applications of MR products involving prebiotics as novel multiple-functional ingredients with potential beneficial effects on human health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, in vitro fermentation of alternansucrase raffinose-derived oligosaccharides, previously fractionated according to their degree of polymerization (DP; from DP4 to DP10), was carried out using small-scale pH-controlled batch cultures at 37 °C under anaerobic conditions with human feces. Bifidogenic activity of oligosaccharides with DP4�6 similar to that of lactulose was observed; however, in general, a significant growth of lactic acid bacteria Bacteroides, Atopobium cluster, and Clostridium histolyticum group was not shown during incubation. Acetic acid was the main short chain fatty acid (SCFA) produced during the fermentation process; the highest levels of this acid were shown by alternansucrase raffinose acceptor pentasaccharides at 10 h (63.11 mM) and heptasaccharides at 24 h (54.71 mM). No significant differences between the gas volume produced by the mixture of raffinose-based oligosaccharides (DP5�DP10) and inulin after 24 h of incubation were detected, whereas lower gas volume was generated by DP4 oligosaccharides. These findings indicate that novel raffinose-derived oligosaccharides (DP4�DP10) could be a new source of prebiotic carbohydrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in vitro batch culture fermentation experiment was conducted with fecal inocula from three healthy volunteers in the presence and absence of a red wine extract. Changes in main bacterial groups were determined by FISH during a 48 h fermentation period. The catabolism of main flavonoids (i.e., flavan-3-ols and anthocyanins) and the formation of a wide a range of phenolic microbial metabolites were determined by a targeted UPLC-PAD-ESI-TQ MS method. Statistical analysis revealed that catechol/pyrocatechol, as well as 4-hydroxy-5-(phenyl)-valeric, 3- and 4-hydroxyphenylacetic, phenylacetic, phenylpropionic, and benzoic acids, showed the greatest increases in concentration during fermentation, whereas 5-(3′-hydroxyphenyl)-γ-valerolactone, its open form 4-hydroxy-5-(3′-hydroxyphenyl)-valeric acid, and 3,4-dihydroxyphenylacetic acid represented the largest interindividual variations in the catabolism of red wine polyphenols. Despite these changes, microbial catabolism did not produce significant changes in the main bacterial groups detected, although a slight inhibition of the Clostridium histolyticum group was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the aim of investigating the potential of flavan-3-ols to influence the growth of intestinal bacterial groups, we have carried out the in vitro fermentation, with human faecal microbiota, of two purified fractions from grape seed extract (GSE): GSE-M (70% monomers and 28% procyanidins) and GSE-O (21% monomers and 78 % procyanidins). Samples were collected at 0, 5, 10, 24, 30 and 48 h of fermentation for bacterial enumeration by fluorescent in situ hybridization and for analysis of phenolic metabolites. Both GSE-M and GSE-O fractions promoted growth of Lactobacillus/Enterococcus and decrease in the Clostridium histolyticum group during fermentation, although the effects were only statistically significant with GSE-M for Lactobacillus/Enterococcus (at 5 and 10 h of fermentation) and GSE-O for C. histolyticum (at 10 h of fermentation). Main changes in polyphenol catabolism also occurred during the first 10 h of fermentation, however no significant correlation coefficients (P>0.05) were found between changes in microbial populations and precursor flavan-3-ols or microbial metabolites. Together these data suggest that the flavan-3-ol profile of a particular food source could affect the microbiota composition and its catabolic activity, inducing changes that could in turn affect the bioavailability and potential bioactivity of these compounds.