22 resultados para hollow sphere aluminum


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of three-dimensional shell-like structures with bilayer graphene walls is described. The structures are produced by the passage of an electric current through graphite in an arc-discharge apparatus. High resolution transmission electron microscopy is used to characterize the carbon, and provides evidence that the structures are three-dimensional rather than flat. A striking feature of the material is that it contains bilayer nanotubes seamlessly joined to larger shell-like regions. The possible growth mechanism of the carbon is discussed, and potential applications considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The value of using social development knowledge as a tool for building development policy was promoted by the British Department for International Development in the late 1990s. This article takes the case of a capacity building initiative that sought to build social development knowledge as a resource for policy formulation in 'southern' countries. Situating knowledge as a development resource presents difficulties for intervention processes that have historically developed to provide access to economic and social assets. This article highlights some of the issues involved in trying to build social development capacity and questions the suitability of this style of intervention. Inappropriate and short-term support for knowledge capacity building carries the danger that the traditional separation between the academic and practice spheres will be reinforced, making the process of democratising knowledge more difficult.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudomomentum and pseudoenergy are both measures of wave activity for disturbances in a fluid, relative to a notional background state. Together they give information on the propagation, growth, and decay of disturbances. Wave activity conservation laws are most readily derived for the primitive equations on the sphere by using isentropic coordinates. However, the intersection of isentropic surfaces with the ground (and associated potential temperature anomalies) is a crucial aspect of baroclinic wave evolution. A new expression is derived for pseudoenergy that is valid for large-amplitude disturbances spanning isentropic layers that may intersect the ground. The pseudoenergy of small-amplitude disturbances is also obtained by linearizing about a zonally symmetric background state. The new expression generalizes previous pseudoenergy results for quasigeostrophic disturbances on the β plane and complements existing large-amplitude results for pseudomomentum. The pseudomomentum and pseudoenergy diagnostics are applied to an extended winter from the European Centre for Medium-Range Weather Forecasts Interim Re-Analysis data. The time series identify distinct phenomena such as a baroclinic wave life cycle where the wave activity in boundary potential temperature saturates nonlinearly almost two days before the peak in wave activity near the tropopause. The coherent zonal propagation speed of disturbances at tropopause level, including distinct eastward, westward, and stationary phases, is shown to be dictated by the ratio of total hemispheric pseudoenergy to pseudomomentum. Variations in the lower-boundary contribution to pseudoenergy dominate changes in propagation speed; phases of westward progression are associated with stronger boundary potential temperature perturbations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that, for a sufficiently large value of β, two-dimensional flow on a doubly-periodic beta-plane cannot be ergodic (phase-space filling) on the phase-space surface of constant energy and enstrophy. A corresponding result holds for flow on the surface of a rotating sphere, for a sufficiently rapid rotation rate Ω. This implies that the higher-order, non-quadratic invariants are exerting a significant influence on the statistical evolution of the flow. The proof relies on the existence of a finite-amplitude Liapunov stability theorem for zonally symmetric basic states with a non-vanishing absolute-vorticity gradient. When the domain size is much larger than the size of a typical eddy, then a sufficient condition for non-ergodicity is that the wave steepness ε < 1, where ε = 2[surd radical]2Z/βU in the planar case and $\epsilon = 2^{\frac{1}{4}} a^{\frac{5}{2}}Z^{\frac{7}{4}}/\Omega U^{\frac{5}{2}}$ in the spherical case, and where Z is the enstrophy, U the r.m.s. velocity, and a the radius of the sphere. This result may help to explain why numerical simulations of unforced beta-plane turbulence (in which ε decreases in time) seem to evolve into a non-ergodic regime at large scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hollow capsules can be prepared in a single stage by the interfacial complexation of methylcellulose (MC) with poly(acrylic acid) (PAA) or tannic acid (TA) via hydrogen bonding in aqueous solutions. The formation of capsules is observed when viscous solution of methylcellulose is added drop-wise to diluted solutions of polyacids under acidic conditions. The optimal parameters such as polymer concentration and solution pH for the formation of these capsules were established in this work. It was found that tannic acid forms capsules in a broader range of concentrations and pHs compared to poly(acrylic acid). The TA/MC capsules exhibited better stability compared to PAA/MC in response to increase in pH: the dissolution of TA/MC capsules observed at pH > 9.5; whereas PAA/MC capsules dissolved at pH > 3.8. The interfacial complexation can be considered as a potential single stage alternative to the formation of capsules using multistage layer-by-layer deposition method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An equation of Monge-Ampère type has, for the first time, been solved numerically on the surface of the sphere in order to generate optimally transported (OT) meshes, equidistributed with respect to a monitor function. Optimal transport generates meshes that keep the same connectivity as the original mesh, making them suitable for r-adaptive simulations, in which the equations of motion can be solved in a moving frame of reference in order to avoid mapping the solution between old and new meshes and to avoid load balancing problems on parallel computers. The semi-implicit solution of the Monge-Ampère type equation involves a new linearisation of the Hessian term, and exponential maps are used to map from old to new meshes on the sphere. The determinant of the Hessian is evaluated as the change in volume between old and new mesh cells, rather than using numerical approximations to the gradients. OT meshes are generated to compare with centroidal Voronoi tesselations on the sphere and are found to have advantages and disadvantages; OT equidistribution is more accurate, the number of iterations to convergence is independent of the mesh size, face skewness is reduced and the connectivity does not change. However anisotropy is higher and the OT meshes are non-orthogonal. It is shown that optimal transport on the sphere leads to meshes that do not tangle. However, tangling can be introduced by numerical errors in calculating the gradient of the mesh potential. Methods for alleviating this problem are explored. Finally, OT meshes are generated using observed precipitation as a monitor function, in order to demonstrate the potential power of the technique.