31 resultados para high energy cosmic rays


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An understanding of how the heliosphere modulates galactic cosmic ray (GCR) fluxes and spectra is important, not only for studies of their origin, acceleration and propagation in our galaxy, but also for predicting their effects (on technology and on the Earth’s environment and organisms) and for interpreting abundances of cosmogenic isotopes in meteorites and terrestrial reservoirs. In contrast to the early interplanetary measurements, there is growing evidence for a dominant role in GCR shielding of the total open magnetic flux, which emerges from the solar atmosphere and enters the heliosphere. In this paper, we relate a strong 1.68- year oscillation in GCR fluxes to a corresponding oscillation in the open solar magnetic flux and infer cosmic-ray propagation paths confirming the predictions of theories in which drift is important in modulating the cosmic ray flux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The letters published in the ‘Focus issue on high energy particles and atmospheric processes’ serve to broaden the discussion about the influence of high energy particles on the atmosphere beyond their possible effects on clouds and climate. These letters link climate and meteorological processes with atmospheric electricity, atmospheric chemistry, high energy physics and aerosol science from the smallest molecular cluster ions through to liquid droplets. Progress in such a disparate and complex topic is very likely to benefit from continued interdisciplinary interactions between traditionally distinct science areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cosmic rays produce molecular cluster ions as they pass through the lower atmosphere. Neutral molecular clusters such as dimers and complexes are expected to make a small contribution to the radiative balance, but atmospheric absorption by charged clusters has not hitherto been observed. In an atmospheric experiment, a narrowband thermopile filter radiometer centred on 9.15 {\mu}m, an absorption band previously associated with infra-red absorption of molecular cluster ions, was used to monitor changes following events identified by a cosmic ray telescope sensitive to high-energy (>400 MeV) particles, principally muons. The average change in longwave radiation in this absorption band due to molecular cluster ions is 7 mWm sup{-2}. The integrated atmospheric energy density for each event is 2 Jm sup{-2}, representing an amplification factor of 10 sup{12} compared to the estimated energy density of a typical air shower. This absorption is expected to occur continuously and globally, but calculations suggest that it has only a small effect on climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-speed solar wind streams modify the Earth's geomagnetic environment, perturbing the ionosphere, modulating the flux of cosmic rays into the Earth atmosphere, and triggering substorms. Such activity can affect modern technological systems. To investigate the potential for predicting the arrival of such streams at Earth, images taken by the Heliospheric Imager (HI) on the STEREO-A spacecraft have been used to identify the onsets of high-speed solar wind streams from observations of regions of increased plasma concentrations associated with corotating interaction regions, or CIRs. In order to confirm that these transients were indeed associated with CIRs and to study their average properties, arrival times predicted from the HI images were used in a superposed epoch analysis to confirm their identity in near-Earth solar wind data obtained by the Advanced Composition Explorer (ACE) spacecraft and to observe their influence on a number of salient geophysical parameters. The results are almost identical to those of a parallel superposed epoch analysis that used the onset times of the high-speed streams derived from east/west deflections in the ACE measurements of solar wind speed to predict the arrival of such streams at Earth, assuming they corotated with the Sun with a period of 27 days. Repeating the superposed epoch analysis using restricted data sets demonstrates that this technique can provide a timely prediction of the arrival of CIRs at least 1 day ahead of their arrival at Earth and that such advanced warning can be provided from a spacecraft placed 40° ahead of Earth in its orbit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the causes of the century-long increase in geomagnetic activity, quantified by annual means of the aa index, using observations of interplanetary space, galactic cosmic rays, the ionosphere, and the auroral electrojet, made during the last three solar cycles. The effects of changes in ionospheric conductivity, the Earth's dipole tilt, and magnetic moment are shown to be small; only changes in near-Earth interplanetary space make a significant contribution to the long-term increase in activity. We study the effects of the interplanetary medium by applying dimensional analysis to generate the optimum solar wind-magnetosphere energy coupling function, having an unprecedentedly high correlation coefficient of 0.97. Analysis of the terms of the coupling function shows that the largest contributions to the drift in activity over solar cycles 20-22 originate from rises in the average interplanetary magnetic field (IMF) strength, solar wind concentration, and speed; average IMF orientation has grown somewhat less propitious for causing geomagnetic activity. The combination of these factors explains almost all of the 39% rise in aa observed over the last three solar cycles. Whereas the IMF strength varies approximately in phase with sunspot numbers, neither its orientation nor the solar wind density shows any coherent solar cycle variation. The solar wind speed peaks strongly in the declining phase of even-numbered cycles and can be identified as the chief cause of the phase shift between the sunspot numbers and the aa index. The rise in the IMF magnitude, the largest single contributor to the drift in geomagnetic activity, is shown to be caused by a rise in the solar coronal magnetic field, consistent with a rise in the coronal source field, modeled from photospheric observations, and an observed decay in cosmic ray fluxes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding effects of ionisation in the lower atmosphere is a new interdisciplinary area, crossing the traditionally distinct scientific boundaries between astro-particle and atmospheric physics and also requiring understanding of both heliospheric and magnetospheric influences on cosmic rays. Following the paper of Erlykin et al. (2014) we develop further the interpretation of our observed changes in long-wave (LW) radiation, Aplin and Lockwood (2013) by taking account of both cosmic ray ionisation yields and atmospheric radiative transfer. To demonstrate this, we show that the thermal structure of the whole atmosphere needs to be considered along with the vertical profile of ionisation. Allowing for, in particular, ionisation by all components of a cosmic ray shower and not just by the muons, reveals that the effect we have detected is certainly not inconsistent with laboratory observations of the LW absorption cross section. The analysis presented here, although very different from that of Erlykin et al., does come to the same conclusion that the events detected by AL were not caused by individual cosmic ray primaries – not because it is impossible on energetic grounds, but because events of the required energy are too infrequent for the 12 h_1 rate at which they were seen by the AL experiment. The present paper numerically models the effect of three different scenario changes to the primary GCR spectrum which all reproduce the required magnitude of the effect observed by AL. However, they cannot solely explain the observed delay in the peak effect which, if confirmed, would appear to open up a whole new and interesting area in the study of water oligomers and their effects on LW radiation. We argue that a technical artefact in the AL experiment is highly unlikely and that our initial observations merit both a wide-ranging follow-up experiment and more rigorous, self-consistent, three-dimensional radiative transfer modelling

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Galactic cosmic rays (GCRs) are extremely difficult to shield against and pose one of the most severe long-term hazards for human exploration of space. The recent solar minimum between solar cycles 23 and 24 shows a prolonged period of reduced solar activity and low interplanetary magnetic field strengths. As a result, the modulation of GCRs is very weak, and the fluxes of GCRs are near their highest levels in the last 25 years in the fall of 2009. Here we explore the dose rates of GCRs in the current prolonged solar minimum and make predictions for the Lunar Reconnaissance Orbiter (LRO) Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which is now measuring GCRs in the lunar environment. Our results confirm the weak modulation of GCRs leading to the largest dose rates seen in the last 25 years over a prolonged period of little solar activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solar wind modulates the flux of galactic cosmic rays impinging on Earth inversely with solar activity. Cosmic ray ionisation is the major source of air’s electrical conductivity over the oceans and well above the continents. Differential solar modulation of the cosmic ray energy spectrum modifies the cosmic ray ionisation at different latitudes,varying the total atmospheric columnar conductance. This redistributes current flow in the global atmospheric electrical circuit, including the local vertical current density and the related surface potential gradient. Surface vertical current density and potential gradient measurements made independently at Lerwick Observatory,Shetland,from 1978 to 1985 are compared with modelled changes in cosmic ray ionisation arising from solar activity changes. Both the lower troposphere atmospheric electricity quantities are significantly increased at cosmic ray maximum(solar minimum),with a proportional change greater than that of the cosmic ray change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current energy requirements system used in the United Kingdom for lactating dairy cows utilizes key parameters such as metabolizable energy intake (MEI) at maintenance (MEm), the efficiency of utilization of MEI for 1) maintenance, 2) milk production (k(l)), 3) growth (k(g)), and the efficiency of utilization of body stores for milk production (k(t)). Traditionally, these have been determined using linear regression methods to analyze energy balance data from calorimetry experiments. Many studies have highlighted a number of concerns over current energy feeding systems particularly in relation to these key parameters, and the linear models used for analyzing. Therefore, a database containing 652 dairy cow observations was assembled from calorimetry studies in the United Kingdom. Five functions for analyzing energy balance data were considered: straight line, two diminishing returns functions, (the Mitscherlich and the rectangular hyperbola), and two sigmoidal functions (the logistic and the Gompertz). Meta-analysis of the data was conducted to estimate k(g) and k(t). Values of 0.83 to 0.86 and 0.66 to 0.69 were obtained for k(g) and k(t) using all the functions (with standard errors of 0.028 and 0.027), respectively, which were considerably different from previous reports of 0.60 to 0.75 for k(g) and 0.82 to 0.84 for k(t). Using the estimated values of k(g) and k(t), the data were corrected to allow for body tissue changes. Based on the definition of k(l) as the derivative of the ratio of milk energy derived from MEI to MEI directed towards milk production, MEm and k(l) were determined. Meta-analysis of the pooled data showed that the average k(l) ranged from 0.50 to 0.58 and MEm ranged between 0.34 and 0.64 MJ/kg of BW0.75 per day. Although the constrained Mitscherlich fitted the data as good as the straight line, more observations at high energy intakes (above 2.4 MJ/kg of BW0.75 per day) are required to determine conclusively whether milk energy is related to MEI linearly or not.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periplasmic chaperone/usher machineries are used for assembly of filamentous adhesion organelles of Gram-negative pathogens in a process that has been suggested to be driven by folding energy. Structures of mutant chaperone-subunit complexes revealed a final folding transition (condensation of the subunit hydrophobic core) on the release of organelle subunit from the chaperone-subunit pre-assembly complex and incorporation into the final fibre structure. However, in view of the large interface between chaperone and subunit in the pre-assembly complex and the reported stability of this complex, it is difficult to understand how final folding could release sufficient energy to drive assembly. In the present paper, we show the X-ray structure for a native chaperone-fibre complex that, together with thermodynamic data, shows that the final folding step is indeed an essential component of the assembly process. We show that completion of the hydrophobic core and incorporation into the fibre results in an exceptionally stable module, whereas the chaperone-subunit preassembly complex is greatly destabilized by the high-energy conformation of the bound subunit. This difference in stabilities creates a free energy potential that drives fibre formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most gram-negative pathogens express fibrous adhesive virulence organelles that mediate targeting to the sites of infection. The F1 capsular antigen from the plague pathogen Yersinia pestis consists of linear fibers of a single subunit (Caf1) and serves as a prototype for nonpilus organelles assembled via the chaperone/usher pathway. Genetic data together with high-resolution X-ray structures corresponding to snapshots of the assembly process reveal the structural basis of fiber formation. Comparison of chaperone bound Caf1 subunit with the subunit in the fiber reveals a novel type of conformational change involving the entire hydrophobic core of the protein. The observed conformational change suggests that the chaperone traps a high-energy folding intermediate of Caf1. A model is proposed in which release of the subunit allows folding to be completed, driving fiber formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2011 is the centenary year of the short paper (Wilson,1911) first describing the cloud chamber, the device for visualising high-energy charged particles which earned the Scottish physicist Charles Thomas Rees (‘CTR’) Wilson the 1927 Nobel Prize for physics. His many achievements in atmospheric science, some of which have current relevance, are briefly reviewed here. CTR Wilson’s lifetime of scientific research work was principally in atmospheric electricity at the Cavendish Laboratory, Cambridge; he was Reader in Electrical Meteorology from 1918 and Jacksonian Professor from 1925 to 1935. However, he is immortalised in physics for his invention of the cloud chamber, because of its great significance as an early visualisation tool for particles such as cosmic rays1 (Galison, 1997). Sir Lawrence Bragg summarised its importance:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For decades regulators in the energy sector have focused on facilitating the maximisation of energy supply in order to meet demand through liberalisation and removal of market barriers. The debate on climate change has emphasised a new type of risk in the balance between energy demand and supply: excessively high energy demand brings about significantly negative environmental and economic impacts. This is because if a vast number of users is consuming electricity at the same time, energy suppliers have to activate dirty old power plants with higher greenhouse gas emissions and higher system costs. The creation of a Europe-wide electricity market requires a systematic investigation into the risk of aggregate peak demand. This paper draws on the e-Living Time-Use Survey database to assess the risk of aggregate peak residential electricity demand for European energy markets. Findings highlight in which countries and for what activities the risk of aggregate peak demand is greater. The discussion highlights which approaches energy regulators have started considering to convince users about the risks of consuming too much energy during peak times. These include ‘nudging’ approaches such as the roll-out of smart meters, incentives for shifting the timing of energy consumption, differentiated time-of-use tariffs, regulatory financial incentives and consumption data sharing at the community level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to predict times of greater galactic cosmic ray (GCR) fluxes is important for reducing the hazards caused by these particles to satellite communications, aviation, or astronauts. The 11-year solar-cycle variation in cosmic rays is highly correlated with the strength of the heliospheric magnetic field. Differences in GCR flux during alternate solar cycles yield a 22-year cycle, known as the Hale Cycle, which is thought to be due to different particle drift patterns when the northern solar pole has predominantly positive (denoted as qA>0 cycle) or negative (qA<0) polarities. This results in the onset of the peak cosmic-ray flux at Earth occurring earlier during qA>0 cycles than for qA<0 cycles, which in turn causes the peak to be more dome-shaped for qA>0 and more sharply peaked for qA<0. In this study, we demonstrate that properties of the large-scale heliospheric magnetic field are different during the declining phase of the qA<0 and qA>0 solar cycles, when the difference in GCR flux is most apparent. This suggests that particle drifts may not be the sole mechanism responsible for the Hale Cycle in GCR flux at Earth. However, we also demonstrate that these polarity-dependent heliospheric differences are evident during the space-age but are much less clear in earlier data: using geomagnetic reconstructions, we show that for the period of 1905 - 1965, alternate polarities do not give as significant a difference during the declining phase of the solar cycle. Thus we suggest that the 22-year cycle in cosmic-ray flux is at least partly the result of direct modulation by the heliospheric magnetic field and that this effect may be primarily limited to the grand solar maximum of the space-age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Galactic cosmic rays (GCRs) are modulated by the heliospheric magnetic field (HMF) both over decadal time scales (due to long-term, global HMF variations), and over time scales of a few hours (associated with solar wind structures such as coronal mass ejections or the heliospheric current sheet, HCS). Due to the close association between the HCS, the streamer belt, and the band of slow solar wind, HCS crossings are often associated with corotating interaction regions where fast solar wind catches up and compresses slow solar wind ahead of it. However, not all HCS crossings are associated with strong compressions. In this study we categorize HCS crossings in two ways: Firstly, using the change in magnetic polarity, as either away-to-toward (AT) or toward-to-away (TA) magnetic field directions relative to the Sun and, secondly, using the strength of the associated solar wind compression, determined from the observed plasma density enhancement. For each category, we use superposed epoch analyses to show differences in both solar wind parameters and GCR flux inferred from neutron monitors. For strong-compression HCS crossings, we observe a peak in neutron counts preceding the HCS crossing, followed by a large drop after the crossing, attributable to the so-called ‘snow-plough’ effect. For weak-compression HCS crossings, where magnetic field polarity effects are more readily observable, we instead observe that the neutron counts have a tendency to peak in the away magnetic field sector. By splitting the data by the dominant polarity at each solar polar region, we find that the increase in GCR flux prior to the HCS crossing is primarily from strong compressions in cycles with negative north polar fields due to GCR drift effects. Finally, we report on unexpected differences in GCR behavior between TA weak compressions during opposing polarity cycles.