78 resultados para genome maintenance
Resumo:
In an attempt to focus clients' minds on the importance of considering the construction and maintenance costs of a commercial office building (both as a factor in staff productivity and as a fraction of lifetime staff costs) there is an often-quoted ratio of costs of 1:5:200, where for every one pound spent on construction cost, five are spent on maintenance and building operating costs and 200 on staffing and business operating costs. This seems to stem from a paper published by the Royal Academy of Engineering, in which no data is given and no derivation or defence of the ratio appears. The accompanying belief that higher quality design and construction increases staff productivity, and simultaneously reduces maintenance costs, how ever laudable, appears unsupported by research, and carries all the hallmarks of an "urban myth". In tracking down data about real buildings, a more realistic ratio appears to depend on a huge variety of variables, as well as the definition of the number of "lifetime" years. The ill-defined origins of the original ratio (1:5:200) describing these variables have made replication impossible. However, by using published sources of data, we have found that for three office buildings, a more realistic ratio is 1:0.4:12. As there is nothing in the public domain about what comprised the original research that gave rise to 1:5:200, it is not possible to make a true comparison between these new calculations and the originals. Clients and construction professionals stand to be misled because the popularity and widespread use of the wrong ratio appears to be mis-informing important investment and policy decisions.
Resumo:
Modern buildings are designed to enhance the match between environment, spaces and the people carrying out work, so that the well-being and the performance of the occupants are all in harmony. Building services are systems that facilitate a healthy working environment within which workers productivity can be optimised in the buildings. However, the maintenance of these services is fraught with problems that may contribute to up to 50% of the total life cycle cost of the building. Maintenance support is one area which is not usually designed into the system as this is not common practice in the services industry. The other areas of shortfall for future designs are; client requirements, commissioning, facilities management data and post occupancy evaluation feedback which needs to be adequately planned to capture and document this information for use in future designs. At the University of Reading an integrated approach has been developed to assemble the multitude of aspects inherent in this field. The means records required and measured achievements for the benefit of both building owners and practitioners. This integrated approach can be represented in a Through Life Business Model (TLBM) format using the concept of Integrated Logistic Support (ILS). The prototype TLBM developed utilises the tailored tools and techniques of ILS for building services. This TLBM approach will facilitate the successful development of a databank that would be invaluable in capturing essential data (e.g. reliability of components) for enhancing future building services designs, life cycle costing and decision making by practitioners, in particular facilities managers.
Resumo:
Commonly used repair rate models for repairable systems in the reliability literature are renewal processes, generalised renewal processes or non-homogeneous Poisson processes. In addition to these models, geometric processes (GP) are studied occasionally. The GP, however, can only model systems with monotonously changing (increasing, decreasing or constant) failure intensities. This paper deals with the reliability modelling of failure processes for repairable systems where the failure intensity shows a bathtub-type non-monotonic behaviour. A new stochastic process, i.e. an extended Poisson process, is introduced in this paper. Reliability indices are presented, and the parameters of the new process are estimated. Experimental results on a data set demonstrate the validity of the new process.
Resumo:
The basic repair rate models for repairable systems may be homogeneous Poisson processes, renewal processes or nonhomogeneous Poisson processes. In addition to these models, geometric processes are studied occasionally. Geometric processes, however, can only model systems with monotonously changing (increasing, decreasing or constant) failure intensity. This paper deals with the reliability modelling of the failure process of repairable systems when the failure intensity shows a bathtub type non-monotonic behaviour. A new stochastic process, an extended Poisson process, is introduced. Reliability indices and parameter estimation are presented. A comparison of this model with other repair models based on a dataset is made.
Resumo:
In real-world environments it is usually difficult to specify the quality of a preventive maintenance (PM) action precisely. This uncertainty makes it problematic to optimise maintenance policy.-This problem is tackled in this paper by assuming that the-quality of a PM action is a random variable following a probability distribution. Two frequently studied PM models, a failure rate PM model and an age reduction PM model, are investigated. The optimal PM policies are presented and optimised. Numerical examples are also given.
Resumo:
In the reliability literature, maintenance time is usually ignored during the optimization of maintenance policies. In some scenarios, costs due to system failures may vary with time, and the ignorance of maintenance time will lead to unrealistic results. This paper develops maintenance policies for such situations where the system under study operates iteratively at two successive states: up or down. The costs due to system failure at the up state consist of both business losses & maintenance costs, whereas those at the down state only include maintenance costs. We consider three models: Model A, B, and C: Model A makes only corrective maintenance (CM). Model B performs imperfect preventive maintenance (PM) sequentially, and CM. Model C executes PM periodically, and CM; this PM can restore the system as good as the state just after the latest CM. The CM in this paper is imperfect repair. Finally, the impact of these maintenance policies is illustrated through numerical examples.
Resumo:
Bone metabolism involves a complex balance between the deposition of matrix and mineralization and resorption. There is now good evidence that dietary components and herbal products can influence these processes, particularly by inhibiting bone resorption, thus having beneficial effects on the skeleton. For example, it has been reported that a number of common vegetables, including onion, garlic and parsley, can inhibit bone resorption in ovariectomized rats. Essential oils derived from sage, rosemary, thyme and other herbs inhibit osteoclast activity in vitro and in vitro and leading to an increase in bone mineral density. Soya, a rich source of isoflavones, has shown promising results and epidemiological evidence to support a use in maintaining bone health, and various traditional herbal formulae in Chinese and Ayurvedic medicine also have demonstrable effects in pharmacological models of osteoporosis. Recently, cannabinoids have been described as having positive effects on osteoblast differentiation, and the presence of cannabinoid receptors in bone tissue indicates a more complex role in bone metabolism than previously thought. The first part of this review briefly discusses normal bone metabolism and disorders caused by its disruption, with particular reference to osteoporosis and current pharmacological treatments. The effects of natural products on bone and connective tissue are then discussed, to include items of diet, herbal extracts and food supplements, with evidence for their efficacy outlined. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae). On the basis of these sequences alone, the E-Pae strains were identical to the Pae type-strain (I-Pae), isolated from leaf spots on Indian horse chestnut in India in 1969. The phylogenetic analyses also showed that Pae belongs to a distinct clade of P. syringae pathovars adapted to woody hosts. We generated genome-wide Illumina sequence data from the three E-Pae strains and one strain of I-Pae. Comparative genomic analyses revealed pathovar-specific genomic regions in Pae potentially implicated in virulence on a tree host, including genes for the catabolism of plant-derived aromatic compounds and enterobactin synthesis. Several gene clusters displayed intra-pathovar variation, including those encoding type IV secretion, a novel fatty acid biosynthesis pathway and a sucrose uptake pathway. Rates of single nucleotide polymorphisms in the four Pae genomes indicate that the three E-Pae strains diverged from each other much more recently than they diverged from I-Pae. The very low genetic diversity among the three geographically distinct E-Pae strains suggests that they originate from a single, recent introduction into Britain, thus highlighting the serious environmental risks posed by the spread of an exotic plant pathogenic bacterium to a new geographic location. The genomic regions in Pae that are absent from other P. syringae pathovars that infect herbaceous hosts may represent candidate genetic adaptations to infection of the woody parts of the tree.
Resumo:
Repeat induced point mutation (RIP), a mechanism causing hypermutation of repetitive DNA sequences in fungi, has been described as a ‘genome defense’ which functions to inactivate mobile elements and inhibit their deleterious effects on genome stability. Here we address the interactions between RIP and transposable elements in the Microbotryum violaceum species complex. Ten strains of M. violaceum, most of which belong to different species of the fungus, were all found to contain intragenomic populations of copia-like retrotransposons. Intragenomic DNA sequence variation among the copia-like elements was analyzed for evidence of RIP. Among species with RIP, there was no significant correlation between the frequency of RIP-induced mutations and inferred transposition rate based on diversity. Two strains of M. violaceum, from two different plant species but belonging to the same fungal lineage, contained copia-like elements with very low diversity, as would result from a high transposition rate, and these were also unique in showing no evidence of the hypermutation patterns indicative of the RIP genome defense. In this species, evidence of RIP was also absent from a Class II helitron-like transposable element. However, unexpectedly the absolute repetitive element load was lower than in other strains.
Resumo:
Epigenetics has progressed rapidly from an obscure quirk of heredity into a data-heavy ‘omic’ science. Our understanding of the molecular mechanisms of epigenomic regulation, and the extent of its importance in nature, are far from complete, but in spite of such drawbacks, population-level studies are extremely valuable: epigenomic regulation is involved in several processes central to evolutionary biology including phenotypic plasticity, evolvability and the mediation of intragenomic conflicts. The first studies of epigenomic variation within populations suggest high levels of phenotypically relevant variation, with the patterns of epigenetic regulation varying between individuals and genome regions as well as with environment. Epigenetic mechanisms appear to function primarily as genome defences, but result in the maintenance of plasticity together with a degree of buffering of developmental programmes; periodic breakdown of epigenetic buffering could potentially cause variation in rates of phenotypic evolution.
Resumo:
Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting thatmost effectors represent species-specific adaptations.