21 resultados para genetic sequence
Resumo:
To investigate the contribution of paternal alleles to the DNA content of olive oil, genetic analyses of olive DNA samples from fruits, leaves, and oil derived from the same tree (cv. Leccino) were carried out. DNA extracted from maternal tissues--leaves and flesh--from different fruits showed identical genetic profiles using a set of DNA markers. Additional simple sequence repeat (SSR) alleles, not found in the maternal samples, were amplified in the embryos (stone), and they were also detected in DNA extracted from the paste obtained by crushing whole fruits and from the oil pressed from this material. These results demonstrate that the DNA profile obtained from olive oil is likely to represent a composite profile of the maternal alleles juxtaposed with alleles contributed by various pollen donors. Therefore, care needs to be taken in the interpretation of DNA profiles obtained from DNA extracted from oil for resolving provenance and authenticity issues.
Resumo:
Cyclamen colchicum has a mixed history in the hands of botanists. This paper examines the genetic identity of a group of wild Cyclamen populations from the Caucasus to discover whther they are Cyclamen colchicum, C. purpurascens or a mixture of the two. The collections supplemented by material collected at the type locality for C. colchicum, proved to be a single but variable genetic group of C. colchicum that was distinct from C. purpurascens.
Resumo:
Background Autism Spectrum Conditions (ASC) are a group of neurodevelopmental conditions characterized by impairments in communication and social interaction, alongside unusually repetitive behaviors and narrow interests. ASC are highly heritable and have complex patterns of inheritance where multiple genes are involved, alongside environmental and epigenetic factors. Asperger Syndrome (AS) is a subgroup of these conditions, where there is no history of language or cognitive delay. Animal models suggest a role for oxytocin (OXT) and oxytocin receptor (OXTR) genes in social-emotional behaviors, and several studies indicate that the oxytocin/oxytocin receptor system is altered in individuals with ASC. Previous studies have reported associations between genetic variations in the OXTR gene and ASC. Methods The present study tested for an association between nine single nucleotide polymorphisms (SNPs) in the OXTR gene and AS in 530 individuals of Caucasian origin, using SNP association test and haplotype analysis. Results There was a significant association between rs2268493 in OXTR and AS. Multiple haplotypes that include this SNP (rs2268493-rs2254298, rs2268490-rs2268493-rs2254298, rs2268493-rs2254298-rs53576, rs237885-rs2268490-rs2268493-rs2254298, rs2268490-rs2268493-rs2254298-rs53576) were also associated with AS. rs2268493 has been previously associated with ASC and putatively alters several transcription factor-binding sites and regulates chromatin states, either directly or through other variants in linkage disequilibrium (LD). Conclusions This study reports a significant association of the sequence variant rs2268493 in the OXTR gene and associated haplotypes with AS.
Resumo:
Faba bean (Vicia faba L.) is a globally important nitrogen-fixing legume, which is widely grown in a diverse range of environments. In this work, we mine and validate a set of 845 SNPs from the aligned transcriptomes of two contrasting inbred lines. Each V. faba SNP is assigned by BLAST analysis to a single Medicago orthologue. This set of syntenically anchored polymorphisms were then validated as individual KASP assays, classified according to their informativeness and performance on a panel of 37 inbred lines, and the best performing 757 markers used to genotype six mapping populations. The six resulting linkage maps were merged into a single consensus map on which 687 SNPs were placed on six linkage groups, each presumed to correspond to one of the six V. faba chromosomes. This sequence-based consensus map was used to explore synteny with the most closely-related crop species, lentil, and the most closely related fully sequenced genome, Medicago. Large tracts of uninterrupted colinearity were found between faba bean and Medicago, making it relatively straightforward to predict gene content and order in mapped genetic interval. As a demonstration of this, we mapped a flower colour gene to a 2 cM interval of Vf chromosome 2 which was highly collinear with Mt3. The obvious candidate gene from 77 gene models in the collinear Medicago chromosome segment was the previously characterized MtWD40-1 gene (Mt3g092830, Mt3g092840) controlling anthocyanin production in Medicago and re-sequencing of the Vf orthologue showed a putative causative deletion of the entire 5’ end of the gene.
Resumo:
We analysed Hordeum spontaneum accessions from 21 different locations to understand the genetic diversity of HsDhn3 alleles and effects of single base mutations on the intrinsically disordered structure of the resulting polypeptide (HsDHN3). HsDHN3 was found to be YSK2-type with a low-frequency 6-aa deletion in the beginning of Exon 1. There is relatively high diversity in the intron region of HsDhn3 compared to the two exon regions. We have found subtle differences in K segments led to changes in amino acids chemical properties. Predictions for protein interaction profiles suggest the presence of a protein-binding site in HsDHN3 that coincides with the K1 segment. Comparison of DHN3 to closely related cereals showed that all of them contain a nuclear localization signal sequence flanking to the K1 segment and a novel conserved region located between the S and K1 segments [E(D/T)DGMGGR]. We found that H. vulgare, H. spontaneum, and Triticum urartu DHN3s have a greater number of phosphorylation sites for protein kinase C than other cereal species, which may be related to stress adaptation. Our results show that the nature and extent of mutations in the conserved segments of K1 and K2 are likely to be key factors in protection of cells.
Resumo:
Rootstock-induced dwarfing of apple scions revolutionized global apple production during the twentieth century, leading to the development of modern intensive orchards. A high root bark percentage (the percentage of the whole root area constituted by root cortex) has previously been associated with rootstock induced dwarfing in apple. In this study, the root bark percentage was measured in a full-sib family of ungrafted apple rootstocks and found to be under the control of three loci. Two QTL for root bark percentage were found to co-localise to the same genomic regions on chromosome 5 and chromosome 11 previously identified as controlling dwarfing, Dw1 and Dw2, respectively. A third QTL was identified on chromosome 13 in a region that has not been previously associated with dwarfing. The development of closely linked 3 Sequence-tagged site STS markers improved the resolution of allelic classes thereby allowing the detection of dominance and epistatic interactions between loci, with high root bark percentage only occurring in specific allelic combinations. In addition, we report a significant negative correlation between root bark percentage and stem diameter (an indicator of tree vigour), measured on a clonally propagated grafted subset of the mapping population. The demonstrated link between root bark percentage and rootstock-induced dwarfing of the scion leads us to propose a three-locus model that is able to explain levels of dwarfing from the dwarf ‘M.27’ to the semi-invigorating rootstock ‘M.116’. Moreover, we suggest that the QTL on chromosome 13 (Rb3) might be analogous to a third dwarfing QTL, Dw3 that has not previously been identified.