42 resultados para fund performance evaluation
Resumo:
This paper presents a quantitative evaluation of a tracking system on PETS 2015 Challenge datasets using well-established performance measures. Using the existing tools, the tracking system implements an end-to-end pipeline that include object detection, tracking and post- processing stages. The evaluation results are presented on the provided sequences of both ARENA and P5 datasets of PETS 2015 Challenge. The results show an encouraging performance of the tracker in terms of accuracy but a greater tendency of being prone to cardinality error and ID changes on both datasets. Moreover, the analysis show a better performance of the tracker on visible imagery than on thermal imagery.
Resumo:
The evaluation of investment fund performance has been one of the main developments of modern portfolio theory. Most studies employ the technique developed by Jensen (1968) that compares a particular fund's returns to a benchmark portfolio of equal risk. However, the standard measures of fund manager performance are known to suffer from a number of problems in practice. In particular previous studies implicitly assume that the risk level of the portfolio is stationary through the evaluation period. That is unconditional measures of performance do not account for the fact that risk and expected returns may vary with the state of the economy. Therefore many of the problems encountered in previous performance studies reflect the inability of traditional measures to handle the dynamic behaviour of returns. As a consequence Ferson and Schadt (1996) suggest an approach to performance evaluation called conditional performance evaluation which is designed to address this problem. This paper utilises such a conditional measure of performance on a sample of 27 UK property funds, over the period 1987-1998. The results of which suggest that once the time varying nature of the funds beta is corrected for, by the addition of the market indicators, the average fund performance show an improvement over that of the traditional methods of analysis.
Resumo:
The performance benefit when using Grid systems comes from different strategies, among which partitioning the applications into parallel tasks is the most important. However, in most cases the enhancement coming from partitioning is smoothed by the effect of the synchronization overhead, mainly due to the high variability of completion times of the different tasks, which, in turn, is due to the large heterogeneity of Grid nodes. For this reason, it is important to have models which capture the performance of such systems. In this paper we describe a queueing-network-based performance model able to accurately analyze Grid architectures, and we use the model to study a real parallel application executed in a Grid. The proposed model improves the classical modelling techniques and highlights the impact of resource heterogeneity and network latency on the application performance.
Resumo:
Dense deployments of wireless local area networks (WLANs) are fast becoming a permanent feature of all developed cities around the world. While this increases capacity and coverage, the problem of increased interference, which is exacerbated by the limited number of channels available, can severely degrade the performance of WLANs if an effective channel assignment scheme is not employed. In an earlier work, an asynchronous, distributed and dynamic channel assignment scheme has been proposed that (1) is simple to implement, (2) does not require any knowledge of the throughput function, and (3) allows asynchronous channel switching by each access point (AP). In this paper, we present extensive performance evaluation of this scheme when it is deployed in the more practical non-uniform and dynamic topology scenarios. Specifically, we investigate its effectiveness (1) when APs are deployed in a nonuniform fashion resulting in some APs suffering from higher levels of interference than others and (2) when APs are effectively switched `on/off' due to the availability/lack of traffic at different times, which creates a dynamically changing network topology. Simulation results based on actual WLAN topologies show that robust performance gains over other channel assignment schemes can still be achieved even in these realistic scenarios.
Resumo:
This paper presents the results of the crowd image analysis challenge, as part of the PETS 2009 workshop. The evaluation is carried out using a selection of the metrics available in the Video Analysis and Content Extraction (VACE) program and the CLassification of Events, Activities, and Relationships (CLEAR) consortium. The evaluation highlights the strengths of the authors’ systems in areas such as precision, accuracy and robustness.
Resumo:
In this paper, we evaluate the Probabilistic Occupancy Map (POM) pedestrian detection algorithm on the PETS 2009 benchmark dataset. POM is a multi-camera generative detection method, which estimates ground plane occupancy from multiple background subtraction views. Occupancy probabilities are iteratively estimated by fitting a synthetic model of the background subtraction to the binary foreground motion. Furthermore, we test the integration of this algorithm into a larger framework designed for understanding human activities in real environments. We demonstrate accurate detection and localization on the PETS dataset, despite suboptimal calibration and foreground motion segmentation input.
Resumo:
This paper presents the results of the crowd image analysis challenge of the Winter PETS 2009 workshop. The evaluation is carried out using a selection of the metrics developed in the Video Analysis and Content Extraction (VACE) program and the CLassification of Events, Activities, and Relationships (CLEAR) consortium [13]. The evaluation highlights the detection and tracking performance of the authors’systems in areas such as precision, accuracy and robustness. The performance is also compared to the PETS 2009 submitted results.
Resumo:
Researchers in the rehabilitation engineering community have been designing and developing a variety of passive/active devices to help persons with limited upper extremity function to perform essential daily manipulations. Devices range from low-end tools such as head/mouth sticks to sophisticated robots using vision and speech input. While almost all of the high-end equipment developed to date relies on visual feedback alone to guide the user providing no tactile or proprioceptive cues, the “low-tech” head/mouth sticks deliver better “feel” because of the inherent force feedback through physical contact with the user's body. However, the disadvantage of a conventional head/mouth stick is that it can only function in a limited workspace and the performance is limited by the user's strength. It therefore seems reasonable to attempt to develop a system that exploits the advantages of the two approaches: the power and flexibility of robotic systems with the sensory feedback of a headstick. The system presented in this paper reflects the design philosophy stated above. This system contains a pair of master-slave robots with the master being operated by the user's head and the slave acting as a telestick. Described in this paper are the design, control strategies, implementation and performance evaluation of the head-controlled force-reflecting telestick system.
Resumo:
The rapid growth of non-listed real estate funds over the last several years has contributed towards establishing this sector as a major investment vehicle for gaining exposure to commercial real estate. Academic research has not kept up with this development, however, as there are still only a few published studies on non-listed real estate funds. This paper aims to identify the factors driving the total return over a seven-year period. Influential factors tested in our analysis include the weighted underlying direct property returns in each country and sector as well as fund size, investment style gearing and the distribution yield. Furthermore, we analyze the interaction of non-listed real estate funds with the performance of the overall economy and that of competing asset classes and found that lagged GDP growth and stock market returns as well as contemporaneous government bond rates are significant and positive predictors of annual fund performance.
Resumo:
An unlisted property fund is a private investment vehicle which aims to provide direct property total returns and may also employ financial leverage which will accentuate performance. They have become a far more prevalent institutional property investment conduit since the early 2000’s. Investors have been primarily attracted to them due to the ease of executing a property exposure, both domestically and internationally, and for their diversification benefits given the capital intensive nature of constructing a well diversified commercial property investment portfolio. However, despite their greater prominence there has been little academic research conducted on the performance and risks of unlisted property fund investments. This can be attributed to a paucity of available data and limited time series where it exists. In this study we have made use of a unique dataset of institutional UK unlisted non-listed property funds over the period 2003Q4 to 2011Q4, using a panel modelling framework in order to determine the key factors which impact on fund performance. The sample provided a rich set of unlisted property fund factors including market exposures, direct property characteristics and the level of financial leverage employed. The findings from the panel regression analysis show that a small number of variables are able to account for the performance of unlisted property funds. These variables should be considered by investors when assessing the risk and return of these vehicles. The impact of financial leverage upon the performance of these vehicles through the recent global financial crisis and subsequent UK commercial property market downturn was also studied. The findings indicate a significant asymmetric effect of employing debt finance within unlisted property funds.
Resumo:
Several pixel-based people counting methods have been developed over the years. Among these the product of scale-weighted pixel sums and a linear correlation coefficient is a popular people counting approach. However most approaches have paid little attention to resolving the true background and instead take all foreground pixels into account. With large crowds moving at varying speeds and with the presence of other moving objects such as vehicles this approach is prone to problems. In this paper we present a method which concentrates on determining the true-foreground, i.e. human-image pixels only. To do this we have proposed, implemented and comparatively evaluated a human detection layer to make people counting more robust in the presence of noise and lack of empty background sequences. We show the effect of combining human detection with a pixel-map based algorithm to i) count only human-classified pixels and ii) prevent foreground pixels belonging to humans from being absorbed into the background model. We evaluate the performance of this approach on the PETS 2009 dataset using various configurations of the proposed methods. Our evaluation demonstrates that the basic benchmark method we implemented can achieve an accuracy of up to 87% on sequence ¿S1.L1 13-57 View 001¿ and our proposed approach can achieve up to 82% on sequence ¿S1.L3 14-33 View 001¿ where the crowd stops and the benchmark accuracy falls to 64%.
Resumo:
This paper describes the crowd image analysis challenge that forms part of the PETS 2009 workshop. The aim of this challenge is to use new or existing systems for i) crowd count and density estimation, ii) tracking of individual(s) within a crowd, and iii) detection of separate flows and specific crowd events, in a real-world environment. The dataset scenarios were filmed from multiple cameras and involve multiple actors.