37 resultados para folic-acid use


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: To assess the suitability of bifidobacteria for inclusion in synbiotic products on the basis of carbohydrate preference, acid and bile tolerance. Methods and Results: Five strains of Bifidobacterium were analysed for their carbohydrate preference from 12 substrates. Maximum growth rates were used to compare substrate preferences. Galacto-oligosaccharides and isomalto-oligosaccharides were well utilized by all the test species. Most bacteria tested could also utilize at least one type of fructan molecule. To determine transit tolerance of potentially probiotic bifidobacteria, acid and bile resistance was tested. A wide range acid resistance was found. Bile tolerance also varied. Conclusions: GOS and IMO were generally well utilized by the tested species. Other substrates were used to different degrees by the different species. Most bifidobacteria are poorly resistant to strongly acidic conditions with the exception of Bifidobacterium lactis Bb12. Bile tolerances were widely variable and it was shown that caution should be exercised when using colorimetric methods to assess bile tolerance. Significance and Impact of Study: The study allows the comparison of the properties of bifidobacteria, allowing a cost effective screen for the best species for use in synbiotic products to allow better survival and efficacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose of review: This review critically evaluates studies investigating the effects of conjugated linoleic acid on human health, including effects on body composition, blood lipids, liver metabolism, insulin sensitivity and immune function. It focuses mainly on human intervention studies, but includes some reference to animal and cellular studies which provide insight into potential molecular mechanisms of action of conjugated linoleic acid. Recent findings: Human studies continue to report inconsistent effects of conjugated linoleic acid on human health. Some of these reports are based on overinterpretation of marginal effects of supplementation. Recent data suggest that the effects of the substance may be isomer dependent and that cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acids have opposing effects on blood lipids and on metabolism in adipocytes and hepatic cells. Summary: Claims that conjugated linoleic acid is beneficial for health remain as yet unconvincing. Human studies investigating the effects of conjugated linoleic acid supplements have tended to use mixtures of isomers and have been inconsistent. More recent studies have attempted to use relatively pure preparations of single isomers and these studies suggest that the effects of conjugated linoleic acid may be isomer-specific. These recent data suggest a relative detrimental effect of trans-10, cis-12 conjugated linoleic acid on blood lipids. There appears to be little effect of conjugated linoleic acid on immune function and the effects on insulin sensitivity remain unclear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To describe the calculations and approaches used to design experimental diets of differing saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) compositions for use in a long-term dietary intervention study, and to evaluate the degree to which the dietary targets were met. Design, setting and subjects: Fifty-one students living in a university hall of residence consumed a reference (SFA) diet for 8 weeks followed by either a moderate MUFA (MM) diet or a high MUFA (HM) diet for 16 weeks. The three diets were designed to differ only in their proportions of SFA and MUFA, while keeping total fat, polyunsaturated fatty acids (PUFA), trans-fatty acids, and the ratio of palmitic to stearic acid, and n-6 to n-3 PUFA, unchanged. Results: Using habitual diet records and a standardised database for food fatty acid compositions, a sequential process of theoretical fat substitutions enabled suitable fat sources for use in the three diets to be identified, and experimental margarines for baking, spreading and the manufacture of snack foods to be designed. The dietary intervention was largely successful in achieving the fatty acid targets of the three diets, although unintended differences between the original target and the analysed fatty acid composition of the experimental margarines resulted in a lower than anticipated MUFA intake on the HM diet, and a lower ratio of palmitic to stearic acid compared with the reference or MM diet. Conclusions: This study has revealed important theoretical considerations that should be taken into account when designing diets of specific fatty acid composition, as well as practical issues of implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficiency of N utilization in ruminants is typically low (around 25%) and highly variable (10% to 40%) compared with the higher efficiency of other production animals. The low efficiency has implications for the production performance and environment. Many efforts have been devoted to improving the efficiency of N utilization in ruminants, and while major improvements in our understanding of N requirements and metabolism have been achieved, the overall efficiency remains low. In general, maximal efficiency of N utilization will only occur at the expense of some losses in production performance. However, optimal production and N utilization may be achieved through the understanding of the key mechanisms involved in the control of N metabolism. Key factors in the rumen include the efficiency of N capture in the rumen (grams of bacterial N per grams of rumen available N) and the modification of protein degradation. Traditionally, protein degradation has been modulated by modifying the feed (physical and chemical treatments). Modifying the rumen microflora involved in peptide degradation and amino acid deamination offers an alternative approach that needs to be addressed. Current evidence indicates that in typical feeding conditions there is limited net recycling of N into the rumen (blood urea-N uptake minus ammonia-N absorption), but understanding the factors controlling urea transport across the rumen wall may reverse the balance to take advantage of the recycling capabilities of ruminants. Finally, there is considerable metabolism of amino acids (AA) in the portal-drained viscera (PDV) and liver. However, most of this process occurs through the uptake of AA from the arterial blood and not during the ‘absorptive’ process. Therefore, AA are available to the peripheral circulation and to the mammary gland before being used by PDV and the liver. In these conditions, the mammary gland plays a key role in determining the efficiency of N utilization because the PDV and liver will use AA in excess of those required by the mammary gland. Protein synthesis in the mammary gland appears to be tightly regulated by local and systemic signals. The understanding of factors regulating AA supply and absorption in the mammary gland, and the synthesis of milk protein should allow the formulation of diets that increase total AA uptake by the mammary gland and thus reduce AA utilization by PDV and the liver. A better understanding of these key processes should allow the development of strategies to improve the efficiency of N utilization in ruminants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissolved organic carbon (DOC) concentrations have been rising in streams and lakes draining catchments with organic soils across Northern Europe. These increases have shown a correlation with decreased sulphate and chloride concentrations. One hypothesis to explain this phenomenon is that these relationships are due an increased in DOC release from soils to freshwaters, caused by a decline in pollutant sulphur and sea-salt deposition. We carried out controlled deposition experiments in the laboratory on intact peat and organomineral O-horizon cores to test this hypothesis. Preliminary data showed a clear correlation between the change in soil water pH and change in DOC concentrations, however uncertainty still remains about whether this is due to changes in biological activity or chemical solubility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiparous rumen-fistulated Holstein cows were fed, from d 1 to 28 post-calving, an ad libitum TMR containing (g/kg DM) grass silage (196), corn silage (196), wheat (277), soybean meal (100), and other feeds (231) with CP, NDF, starch and water soluble carbohydrate concentrations of 176, 260, 299 and 39 g/kg DM respectively and ME of 12.2 MJ/kg DM. Treatments consisting of a minimum of 1010 cfu Megasphaera elsdenii NCIMB 41125 in 250 ml solution (MEGA) or 250 ml of autoclaved M. elsdenii (CONT) were administered via the rumen cannula on d 3 and 12 of lactation (n=7 per treatment). Mid-rumen pH was measured every 15 minutes and eating and ruminating behavior was recorded for 24 h on d 2, 4, 6, 8, 11, 13, 15, 17, 22 and 28. Rumen fluid for VFA and lactic acid (LA) analysis was collected at 11 timepoints on each of d 2, 4, 6, 13 and 15. Data were analysed as repeated measures using the Glimmix (LA data) or Mixed (all other data) procedures of SAS with previous 305 d milk yield and d 2 measurements as covariates where appropriate. Milk yield was higher (CONT 43.0 vs MEGA 45.4 ±0.75 kg/d, P=0.051) and fat concentration was lower (CONT 45.6 vs MEGA 40.4 ±1.05 g/kg, P=0.005) in cows that received MEGA. Time spent eating (263 ±15 min/d) and ruminating (571 ±13 min/d), DM intake (18.4 ±0.74 kg/d), proportion of each 24 h period with rumen pH below 5.6 (3.69 ±0.94 h) and LA concentrations (2.00 mM) were similar (P>0.327) across treatments. Ruminal total VFA concentration (104 ±3 mM) was similar (P=0.404) across treatments, but a shift from acetate (CONT 551 vs MEGA 524 ±14 mmol/mol VFA, P=0.161) to propionate production (CONT 249 vs MEGA 275 ±11 mmol/mol VFA, P=0.099) meant that the acetate:propionate ratio (CONT 2.33 vs MEGA 1.94 ±0.15) was reduced (P=0.072) in cows that received MEGA. This study provides evidence that supplementation of early lactation dairy cows with MEGA alters rumen fermentation patterns in favour of propionate, with potential benefits for animal health and productivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND AIM: The atherogenic potential of dietary derived lipids, chylomicrons (CM) and their remnants (CMr) is now becoming more widely recognised. To investigate factors effecting levels of CM and CMr and their importance in coronary heart disease risk it is essential to use a specific method of quantification. Two studies were carried out to investigate: (i) effects of increased daily intake of long chain n-3 polyunsaturated fatty acid (LC n-3 PUFA), and (ii) effects of increasing meal monounsaturated fatty acid (MUFA) content on the postprandial response of intestinally-derived lipoproteins. The contribution of the intestinally-derived lipoproteins to total lipaemia was assessed by triacylglycerol-rich lipoprotein (TRL) apolipoprotein B-48 (apo B-48) and retinyl ester (RE) concentrations. METHODS AND RESULTS: In a randomised controlled crossover trial (placebo vs LC n-3 PUFA) a mean daily intake of 1.4 g/day of LC n-3 PUFA failed to reduce fasting and postprandial triacylglycerol (TAG) response in 9 healthy male volunteers. Although the pattern and nature of the apo B-48 response was consistent with the TAG response following the two diets, the postprandial RE response differed on the LC n-3 PUFA diet with a lower early RE response and a delayed and more marked increase in RE in the late postprandial period compared with the control diet, but the differences did not reach levels of statistical significance. In the meal study there was no effect of MUFA/SFA content on the total lipaemic response to the meals nor on the contribution of intestinally derived lipoproteins evaluated as TAG, apo B-48 and RE responses in the TRL fraction. In both studies, the RE and apo B-48 measurements provided broadly similar information with respect to lack of effects of dietary or meal fatty acid composition and the presence of single or multiple peak responses. However the apo B-48 and RE measurements differed with respect to the timing of their peak response times, with a delayed RE peak, relalive to apo B-48, of approximately 2-3 hours for the LC n-3 PUFA diet (p = 0.002) study and 1-1.5 hours for the meal MUFA/SFA study. CONCLUSIONS: It was concluded that there are limitations of using RE as a specific CM marker, apo B-48 quantitation was found to be a more appropriate method for CM and CMr quantitation. However it was still considered of value to measure RE as it provided additional information regarding the incorporation of other constituents into the CM particle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Calpain-10 protein (intracellular Ca2+-dependent cysteine protease) may play a role in glucose metabolism, pancreatic β cell function, and regulation of thermogenesis. Several CAPN10 polymorphic sites have been studied for their potential use as risk markers for type 2 diabetes and the metabolic syndrome (MetS). Fatty acids are key metabolic regulators that may interact with genetic factors and influence glucose metabolism. Objective: The objective was to examine whether the genetic variability at the CAPN10 gene locus is associated with the degree of insulin resistance and plasma fatty acid concentrations in subjects with MetS. Design: The insulin sensitivity index, glucose effectiveness, insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)], insulin secretion (disposition index, acute insulin response, and HOMA of β cell function), plasma fatty acid composition, and 5 CAPN10 single nucleotide polymorphisms (SNPs) were determined in a cross-sectional analysis of 452 subjects with MetS participating in the LIPGENE dietary intervention cohort. Results: The rs2953171 SNP interacted with plasma total saturated fatty acid (SFA) concentrations, which were significantly associated with insulin sensitivity (P < 0.031 for fasting insulin, P < 0.028 for HOMA-IR, and P < 0.012 for glucose effectiveness). The G/G genotype was associated with lower fasting insulin concentrations, lower HOMA-IR, and higher glucose effectiveness in subjects with low SFA concentrations (below the median) than in subjects with the minor A allele (G/A and A/A). In contrast, subjects with the G/G allele with the highest SFA concentrations (above the median) had higher fasting insulin and HOMA-IR values and lower glucose effectiveness than did subjects with the A allele. Conclusion: The rs2953171 polymorphism at the CAPN10 gene locus may influence insulin sensitivity by interacting with the plasma fatty acid composition in subjects with MetS. This trial was registered at clinicaltrials.gov as NCT00429195.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benzene-1,2-dioxyacetic acid (bdoaH2) reacts with Mn(CH3CO2)2·4H2O in an ethanol-water mixture to give the manganese(II) complex [Mn(bdoa)(H2O)3]. The X-ray crystal structure of the complex shows the metal to be pseudo seven-coordinate. The quadridentate bdoa2− dicar☐ylate ligand forms an essentially planar girdle around the metal, being strongly bondedtransoid by a car☐ylate oxygen atom from each of the two car☐ylate moieties (mean MnO 2.199A˚) and also weakly chelated by the two internal ether oxygen atoms (mean MnO 2.413A˚). The coordination sphere about the manganese is completed by three water molecules (mean MnO 2.146A˚) lying in a meridional plane orthogonal to that of the bdoa2− ligand. Magnetic, conductivity and voltammetry data for the complex are given, and its use as a catalyst for the disproportionisation of H2O2 is described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PEGylated organosilica nanoparticles have been synthesized through self-condensation of (3-mercaptopropyl)trimethoxysilane in dimethyl sulfoxide into thiolated nanoparticles with their subsequent reaction with methoxypoly(ethylene glycol) maleimide. The PEGylated nanoparticles showed excellent colloidal stability over a wide range of pH in contrast to the parent thiolated nanoparticles, which have a tendency to aggregate irreversibly under acidic conditions (pH < 3.0). Due to the presence of a poly(ethylene glycol)-based corona, the PEGylated nanoparticles are capable of forming hydrogen-bonded interpolymer complexes with poly(acrylic acid) in aqueous solutions under acidic conditions, resulting in larger aggregates. The use of hydrogen-bonding interactions allows more efficient attachment of the nanoparticles to surfaces. The alternating deposition of PEGylated nanoparticles and poly(acrylic acid) on silicon wafer surfaces in a layer-by-layer fashion leads to multilayered coatings. The self-assembly of PEGylated nanoparticles with poly(acrylic acid) in aqueous solutions and at solid surfaces was compared to the behavior of linear poly(ethylene glycol). The nanoparticle system creates thicker layers than the poly(ethylene glycol), and a thicker layer is obtained on a poly(acrylic acid) surface than on a silica surface, because of the effects of hydrogen bonding. Some implications of these hydrogen-bonding-driven interactions between PEGylated nanoparticles and poly(acrylic acid) for pharmaceutical formulations are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing use of drug combinations to treat disease states, such as cancer, calls for improved delivery systems that are able to deliver multiple agents. Herein, we report a series of novel Janus dendrimers with potential for use in combination therapy. Different generations (first and second) of PEG-based dendrons containing two different “model drugs”, benzyl alcohol (BA) and 3-phenylpropionic acid (PPA), were synthesized. BA and PPA were attached via two different linkers (carbonate and ester, respectively) to promote differential drug release. The four dendrons were coupled together via (3 + 2) cycloaddition chemistries to afford four Janus dendrimers, which contained varying amounts and different ratios of BA and PPA, namely, (BA)2-G1-G1-(PPA)2, (BA)4-G2-G1-(PPA)2, (BA)2-G1-G2-(PPA)4, and (BA)4-G2-G2-(PPA)4. Release studies in plasma showed that the dendrimers provided sequential release of the two model drugs, with BA being released faster than PPA from all of the dendrons. The different dendrimers allowed delivery of increasing amounts (0.15–0.30 mM) and in exact molecular ratios (1:2; 2:1; 1:2; 2:2) of the two model drug compounds. The dendrimers were noncytotoxic (100% viability at 1 mg/mL) toward human umbilical vein endothelial cells (HUVEC) and nontoxic toward red blood cells, as confirmed by hemolysis studies. These studies demonstrate that these Janus PEG-based dendrimers offer great potential for the delivery of drugs via combination therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small, synthetic peptides based on specific regions of voltage-gated Ca2+ channels (VGCCs) have been widely used to study Ca2+ channel function and have been instrumental in confirming the contribution of specific amino acid sequences to interactions with putative binding partners. In particular, peptides based on the Ca2+ channel Alpha Interaction Domain (AID) on the intracellular region connecting domains I and II (the I-II loop) and the SYNaptic PRotein INTerction (synprint) site on the II-III loop have been widely used. Emerging evidence suggests that such peptides may themselves possess inherent functionality, a property that may be exploitable for future drug design. Here, we review our recent work using synthetic Ca2+ channel peptides based on sequences within the CaV2.2 amino terminal and I-II loop, originally identified as molecular determinates for G protein modulation, and their effects on VGCC function. These CaV2.2 peptides act as inhibitory modules to decrease Ca2+ influx with direct effects on VGCC gating, ultimately leading to a reduction of synaptic transmission. CaV2.2 peptides also attenuate G protein modulation of VGCCs. Amino acid substitutions generate CaV2.2 peptides with increased or decreased inhibitory effects suggesting that synthetic peptides can be used to further probe VGCC function and, potentially, form the basis for novel therapeutic development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microbiota of the human gastrointestinal tract plays a key role in nutrition and health. Through the process of fermentation, gut bacteria metabolize various substrates (principally dietary components) to end products such as short-chain fatty acids and gases. This anaerobic metabolism is thought to contribute positively toward host daily energy requirements. However, under certain circumstances, the fermentative process may produce undesirable metabolites. This may cause the onset of gut disorders that can be manifest through both acute and chronic conditions. Moreover, the gut flora may become contaminated by transient pathogens that serve further to upset the normal community structure. There has been a recent increase in the use of dietary components that help to maintain, or even improve, the gut microflora "balance." Probiotics are live microbial feed supplements added to appropriate food vehicles (usually fermented milks), whereas prebiotics are dietary carbohydrates that have a selective metabolism in the colon and serve to increase numbers of bacteria seen as desirable. Because of their purported health-promoting properties, lactic acid-producing bacteria, including bifidobacteria, are the usual target organisms. The market value and biological potential of both approaches are enormous. This article will summarize how efficacious types can be identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Certain milk factors can promote the growth of a host-friendly gastrointestinal microflora. This may explain why breast-fed infants experience fewer intestinal infections than their formula-fed counterparts. The effect of formula supplementation with two such factors was investigated in this study. Infant faecal specimens were used to ferment formulas supplemented with glycomacropeptide and α-lactalbumin in a two-stage compound continuous culture model. Bacteriology was determined by fluorescence in situ hybridisation. Vessels that contained breast milk as well as α-lactalbumin and glycomacropeptide had stable counts of bifidobacteria while lactobacilli increased significantly only in vessels with breast milk. Bacteroides, clostridia and Escherichia coli decreased significantly in all runs. Acetate was the principal acid found along with high amounts of propionate and lactate. Supplementation of infant formulas with appropriate milk proteins may be useful in simulating the beneficial bacteriological effects of breast milk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased intake of dietary carbohydrate that is fermented in the colon by the microbiota has been reported to decrease body weight, although the mechanism remains unclear. Here we use in vivo11C-acetate and PET-CT scanning to show that colonic acetate crosses the blood–brain barrier and is taken up by the brain. Intraperitoneal acetate results in appetite suppression and hypothalamic neuronal activation patterning. We also show that acetate administration is associated with activation of acetyl-CoA carboxylase and changes in the expression profiles of regulatory neuropeptides that favour appetite suppression. Furthermore, we demonstrate through 13C high-resolution magic-angle-spinning that 13C acetate from fermentation of 13C-labelled carbohydrate in the colon increases hypothalamic 13C acetate above baseline levels. Hypothalamic 13C acetate regionally increases the 13C labelling of the glutamate–glutamine and GABA neuroglial cycles, with hypothalamic 13C lactate reaching higher levels than the ‘remaining brain’. These observations suggest that acetate has a direct role in central appetite regulation.