22 resultados para finite integral transform technique


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flow along rivers, an integral part of many cities, might provide a key mechanism for ventilation – which is important for air quality and heat stress. Since the flow varies in space and time around rivers, there is limited utility in point measurements. Ground-based remote sensing offers the opportunity to study 3D flow in locations which are hard to observe. For three months in the winter and spring of 2011, the atmospheric flow above the River Thames in central London was observed using a scanning Doppler lidar, a dual-beam scintillometer and sonic anemometry. First, an inter-comparison showed that lidar-derived mean wind-speed estimates compare almost as well to sonic anemometers (root-mean-square error (rmse) 0.65–0.68 m s–1) as comparisons between sonic anemometers (0.35–0.73 m s–1). Second, the lidar duo-beam scanning strategy provided horizontal transects of wind vectors comparison with scintillometer rmse 1.12–1.63 m s–1) which revealed mean and turbulent flow across the river and surrounds; in particular: chanelling flow along the river and turbulence changes consistent with the roughness changes between built to river environments. The results have important consequences for air quality and dispersion around urban rivers, especially given that many cities have high traffic rates on bankside roads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pardo, Patie, and Savov derived, under mild conditions, a Wiener-Hopf type factorization for the exponential functional of proper Lévy processes. In this paper, we extend this factorization by relaxing a finite moment assumption as well as by considering the exponential functional for killed Lévy processes. As a by-product, we derive some interesting fine distributional properties enjoyed by a large class of this random variable, such as the absolute continuity of its distribution and the smoothness, boundedness or complete monotonicity of its density. This type of results is then used to derive similar properties for the law of maxima and first passage time of some stable Lévy processes. Thus, for example, we show that for any stable process with $\rho\in(0,\frac{1}{\alpha}-1]$, where $\rho\in[0,1]$ is the positivity parameter and $\alpha$ is the stable index, then the first passage time has a bounded and non-increasing density on $\mathbb{R}_+$. We also generate many instances of integral or power series representations for the law of the exponential functional of Lévy processes with one or two-sided jumps. The proof of our main results requires different devices from the one developed by Pardo, Patie, Savov. It relies in particular on a generalization of a transform recently introduced by Chazal et al together with some extensions to killed Lévy process of Wiener-Hopf techniques. The factorizations developed here also allow for further applications which we only indicate here also allow for further applications which we only indicate here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed spectrally-resolved extraterrestrial solar spectrum (ESS) is important for line-by-line radiative transfer modeling in the near-infrared (near-IR). Very few observationally-based high-resolution ESS are available in this spectral region. Consequently the theoretically-calculated ESS by Kurucz has been widely adopted. We present the CAVIAR (Continuum Absorption at Visible and Infrared Wavelengths and its Atmospheric Relevance) ESS which is derived using the Langley technique applied to calibrated observations using a ground-based high-resolution Fourier transform spectrometer (FTS) in atmospheric windows from 2000–10000 cm-1 (1–5 μm). There is good agreement between the strengths and positions of solar lines between the CAVIAR and the satellite-based ACE-FTS (Atmospheric Chemistry Experiment-FTS) ESS, in the spectral region where they overlap, and good agreement with other ground-based FTS measurements in two near-IR windows. However there are significant differences in the structure between the CAVIAR ESS and spectra from semi-empirical models. In addition, we found a difference of up to 8 % in the absolute (and hence the wavelength-integrated) irradiance between the CAVIAR ESS and that of Thuillier et al., which was based on measurements from the Atmospheric Laboratory for Applications and Science satellite and other sources. In many spectral regions, this difference is significant, as the coverage factor k = 2 (or 95 % confidence limit) uncertainties in the two sets of observations do not overlap. Since the total solar irradiance is relatively well constrained, if the CAVIAR ESS is correct, then this would indicate an integrated “loss” of solar irradiance of about 30 W m-2 in the near-IR that would have to be compensated by an increase at other wavelengths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New representations and efficient calculation methods are derived for the problem of propagation from an infinite regularly spaced array of coherent line sources above a homogeneous impedance plane, and for the Green's function for sound propagation in the canyon formed by two infinitely high, parallel rigid or sound soft walls and an impedance ground surface. The infinite sum of source contributions is replaced by a finite sum and the remainder is expressed as a Laplace-type integral. A pole subtraction technique is used to remove poles in the integrand which lie near the path of integration, obtaining a smooth integrand, more suitable for numerical integration, and a specific numerical integration method is proposed. Numerical experiments show highly accurate results across the frequency spectrum for a range of ground surface types. It is expected that the methods proposed will prove useful in boundary element modeling of noise propagation in canyon streets and in ducts, and for problems of scattering by periodic surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper considers second kind equations of the form (abbreviated x=y + K2x) in which and the factor z is bounded but otherwise arbitrary so that equations of Wiener-Hopf type are included as a special case. Conditions on a set are obtained such that a generalized Fredholm alternative is valid: if W satisfies these conditions and I − Kz, is injective for each z ε W then I − Kz is invertible for each z ε W and the operators (I − Kz)−1 are uniformly bounded. As a special case some classical results relating to Wiener-Hopf operators are reproduced. A finite section version of the above equation (with the range of integration reduced to [−a, a]) is considered, as are projection and iterated projection methods for its solution. The operators (where denotes the finite section version of Kz) are shown uniformly bounded (in z and a) for all a sufficiently large. Uniform stability and convergence results, for the projection and iterated projection methods, are obtained. The argument generalizes an idea in collectively compact operator theory. Some new results in this theory are obtained and applied to the analysis of projection methods for the above equation when z is compactly supported and k(s − t) replaced by the general kernel k(s,t). A boundary integral equation of the above type, which models outdoor sound propagation over inhomogeneous level terrain, illustrates the application of the theoretical results developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive energy-norm a posteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error, for fully discrete schemes for the linear heat equation. This appears to be the �rst completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size. An essential tool for the analysis is the elliptic reconstruction technique.Our theoretical results are backed with extensive numerical experimentation aimed at (a) testing the practical sharpness and asymptotic behaviour of the error estimator against the error, and (b) deriving an adaptive method based on our estimators. An extra novelty provided is an implementation of a coarsening error "preindicator", with a complete implementation guide in ALBERTA in the appendix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among existing remote sensing applications, land-based X-band radar is an effective technique to monitor the wave fields, and spatial wave information could be obtained from the radar images. Two-dimensional Fourier Transform (2-D FT) is the common algorithm to derive the spectra of radar images. However, the wave field in the nearshore area is highly non-homogeneous due to wave refraction, shoaling, and other coastal mechanisms. When applied in nearshore radar images, 2-D FT would lead to ambiguity of wave characteristics in wave number domain. In this article, we introduce two-dimensional Wavelet Transform (2-D WT) to capture the non-homogeneity of wave fields from nearshore radar images. The results show that wave number spectra by 2-D WT at six parallel space locations in the given image clearly present the shoaling of nearshore waves. Wave number of the peak wave energy is increasing along the inshore direction, and dominant direction of the spectra changes from South South West (SSW) to West South West (WSW). To verify the results of 2-D WT, wave shoaling in radar images is calculated based on dispersion relation. The theoretical calculation results agree with the results of 2-D WT on the whole. The encouraging performance of 2-D WT indicates its strong capability of revealing the non-homogeneity of wave fields in nearshore X-band radar images.