39 resultados para fertiliser
Resumo:
The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the River Lambourn, a Chalk river-system in southern England. The model's abilities to simulate the long-term trend and seasonal patterns in observed stream water nitrate concentrations from 1920 to 2003 were tested. This is the first time a semi-distributed, daily time-step model has been applied to simulate such a long time period and then used to calculate detailed catchment nutrient budgets which span the conversion of pasture to arable during the late 1930s and 1940s. Thus, this work goes beyond source apportionment and looks to demonstrate how such simulations can be used to assess the state of the catchment and develop an understanding of system behaviour. The mass-balance results from 1921, 1922, 1991, 2001 and 2002 are presented and those for 1991 are compared to other modelled and literature values of loads associated with nitrogen soil processes and export. The variations highlighted the problem of comparing modelled fluxes with point measurements but proved useful for identifying the most poorly understood inputs and processes thereby providing an assessment of input data and model structural uncertainty. The modelled terrestrial and instream mass-balances also highlight the importance of the hydrological conditions in pollutant transport. Between 1922 and 2002, increased inputs of nitrogen from fertiliser, livestock and deposition have altered the nitrogen balance with a shift from possible reduction in soil fertility but little environmental impact in 1922, to a situation of nitrogen accumulation in the soil, groundwater and instream biota in 2002. In 1922 and 2002 it was estimated that approximately 2 and 18 kg N ha(-1) yr(-1) respectively were exported from the land to the stream. The utility of the approach and further considerations for the best use of models are discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The impacts of afforestation at Plynlimon in the Severn catchment, mid-Wales. and in the Bedford Ouse catchment in south-east England are evaluated using the INCA model to simulate Nitrogen (N) fluxes and concentrations. The INCA model represents the key hydrological and N processes operating in catchments and simulates the daily dynamic behaviour as well as the annual fluxes. INCA has been applied to five years of data front the Hafren and Hore headwater sub-catchments (6.8 km(2) area in total) of the River Severn at Plytilimon and the model was calibrated and validated against field data. Simulation of afforestation is achieved by altering the uptake rate parameters in the model. INCA simulates the daily N behaviour in the catchments with good accuracy as well as reconstructing the annual budgets for N release following clearfelling a four-fold increase in N fluxes was followed by a slow recovery after re-afforestation. For comparison, INCA has been applied to the large (8380 km(2)) Bedford Ouse catchment to investigate the impact of replacing 20% arable land with forestry. The reduction in fertiliser inputs from arable farming and the N uptake by the forest are predicted to reduce the N flux reaching the main river system, leading to a 33% reduction in N-Nitrate concentrations in the river water.
Resumo:
The impacts of climate change on nitrogen (N) in a lowland chalk stream are investigated using a dynamic modelling approach. The INCA-N model is used to simulate transient daily hydrology and water quality in the River Kennet using temperature and precipitation scenarios downscaled from the General Circulation Model (GCM) output for the period 1961-2100. The three GCMs (CGCM2, CSIRO and HadCM3) yield very different river flow regimes with the latter projecting significant periods of drought in the second half of the 21st century. Stream-water N concentrations increase over time as higher temperatures enhance N release from the soil, and lower river flows reduce the dilution capacity of the river. Particular problems are shown to occur following severe droughts when N mineralization is high and the subsequent breaking of the drought releases high nitrate loads into the river system. Possible strategies for reducing climate-driven N loads are explored using INCA-N. The measures include land use change or fertiliser reduction, reduction in atmospheric nitrate and ammonium deposition, and the introduction of water meadows or connected wetlands adjacent to the river. The most effective strategy is to change land use or reduce fertiliser use, followed by water meadow creation, and atmospheric pollution controls. Finally, a combined approach involving all three strategies is investigated and shown to reduce in-stream nitrate concentrations to those pre-1950s even under climate change. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Models are important tools to assess the scope of management effects on crop productivity under different climatic and soil regimes. Accordingly, this study developed and used a simple model to assess the effects of nitrogen fertiliser and planting density on the water use efficiency (q) of maize in semi-arid Kenya. Field experiments were undertaken at Sonning, Berkshire, UK, in 1996 (one sowing) and 1997 (two sowings). The results from the field experiments plus soil and weather data for Machakos, Kenya (1 degree 33'S, 37 degree 14'E and 1560 m above sea level), were then used to predict the effects that N application and planting density may have on water use by a maize crop grown in semi-arid Kenya. The increase in q due to N application was greater under irrigated (15%-19%) than rainfed (7%-8%) conditions. Also, high planting density increased q (by 13%) under irrigation but decreased q (by 17%) under rainfed conditions. The current study has shown the significance of crop modelling techniques in assessing the influence of N and planting density on maize production in one region of semi-arid Kenya where there is high variability of rainfall.
Resumo:
The effect of adding strobilurins to a triazole (epoxiconazole) fungicide programme on the quality of a range of wheat cultivars was assessed in field experiments in three successive years. Strobilurin was applied at just flag leaf emergence (azoxystrobin) or at the start of stem extension (azoxystrobin or picoxystrobin) and again at flag leaf emergence or at flag leaf emergence and again at ear emergence (azoxystrobin). All strobilurin treatments reduced disease levels, delayed senescence of the flag leaf and consistently increased yields, thousand grain weight and specific weight. Reductions in Hagberg falling number were observed, even by fungicide applications at the start of stem extension, but effects were small compared to the variation among cultivars. Application of fungicide (triazole or strobilurin) before ear emergence increased the amount of blackpoint, but this was partly countered by applying azoxystrobin at ear emergence. The effect of fungicide on protein concentration differed over seasons and cultivar. Where they occurred. small reductions in protein concentration could be compensated for by extra application of nitrogen as foliar urea at anthesis. Foliar urea (40 kg N ha(-1)) applied at anthesis also improved Hagberg failing number and reduced blackpoint in one of the growing seasons. In one season, the effect of foliar urea at anthesis was compared with applications of granular fertiliser at flag leaf emergence. The granular treatment produced grain with more concentrated protein, while the later, foliar application produced higher specific weights. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Lack of sulphur nutrition during potato cultivation has been shown to have profound effects on tuber composition, affecting in particular the concentrations of free asparagine, other amino acids and sugars. This is important because free asparagine and sugars react at high temperatures to form acrylamide, a suspect carcinogen. Free amino acids and sugars also form a variety of other compounds associated with colour and flavour. In this study the volatile aroma compounds formed in potato flour heated at 180 °C for 20 min were compared for three varieties of potato grown, with and without sulphur fertiliser. Approximately 50 compounds were quantified in the headspace extracts of the heated flour, of which over 40 were affected by sulphur fertilisation and/or variety. Many of the 41 compounds found at higher concentrations in the sulphur-deficient flour were Strecker aldehydes and compounds formed from their condensation, whereas only one compound, benzaldehyde, behaved in the same way as did acrylamide and was found at higher concentrations in the sulphur-sufficient flour. The reasons for these effects are discussed.
Resumo:
The spatial variability of soil nitrogen (N) mineralisation has not been extensively studied, which limits our capacity to make N fertiliser recommendations. Even less attention has been paid to the scale-dependence of the variation. The objective of this research was to investigate the scale-dependence of variation of mineral N (MinN, N–NO3− plus N–NH4+) at within-field scales. The study was based on the spatial dependence of the labile fractions of SOM, the key fractions for N mineralisation. Soils were sampled in an unbalanced nested design in a 4-ha arable field to examine the distribution of the variation of SOM at 30, 10, 1, and 0.12 m. Organic matter in free and intra-aggregate light fractions (FLF and IALF) was extracted by physical fractionation. The variation occurred entirely within 0.12 m for FLF and at 10 m for IALF. A subsequent sampling on a 5-m grid was undertaken to link the status of the SOM fractions to MinN, which showed uncorrelated spatial dependence. A uniform application of N fertiliser would be suitable in this case. The failure of SOM fractions to identify any spatial dependence of MinN suggests that other soil variables, or crop indicators, should be tested to see if they can identify different N supply areas within the field for a more efficient and environmentally friendly N management.
Resumo:
Organic agriculture is becoming widespread due to increased consumer demand and regulatory and political support. Organic agriculture can increase arthropod diversity but the response of pests and their natural enemies is variable. Fertiliser is an important component of agricultural systems and its effects on pests and natural enemies will influence agroecosystems. In this study, meta-analysis and vote-counting techniques were used to compare farming system (organic and conventional) and fertiliser effects on arthropod pests and their natural enemies. The meta-analyses indicated that pests generally benefitted from organic techniques, this is particularly evident when experiments were carried out on a smaller scale. Pest responses to organic and conventional fertiliser types were divergent, plant composts benefitted pest arthropods while the opposite was true for manures, this has implications for pest management. Most natural enemy groups responded positively to organic farming although this was not true for Coleopterans. Experimental scale had a prominent impact on natural enemy responses with farm scale studies showing particularly positive effects of organic agriculture on natural enemies. This suggests that it is large scale features of organic agriculture such as landscape heterogeneity that are beneficial to natural enemies. Natural enemy responses to organic fertilisers were positive indicating that field scale management practices including fertiliser can also be important in pest management.
Resumo:
The impact of parasitoids on pests varies between conventional and low-intensity agricultural systems. Although the impacts on parasitoid natural enemies of many practices within these agricultural systems are well understood, the role of fertilisers has been less well studied. The effects of organic-based and conventional fertilisers on Hordeum vulgare L. (Poaceae), the aphid Metopolophium dirhodum Walker (Hemiptera: Aphididae), and its parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae) was investigated using cage release experiments and measures of aphid and parasitoid fitness were taken. Barley tiller number and aphid weight were increased by fertilisers, particularly under conventional treatments. Adult parasitoid size correlated positively with that of the host, M. dirhodum, whereas percentage parasitism was not affected by fertiliser treatment or host size. The results suggest that the increased parasitoid impact observed in some low-intensity or organic systems is not a direct result of fertiliser treatment. Our results indicate that fertiliser treatments that improve cereal-aphid fitness will improve parasitoid fitness as measured by parasitoid size but may not influence percentage parasitism.
Resumo:
The Mitigation Options for Phosphorus and Sediment (MOPS) project investigated the effectiveness of within-field control measures (tramline management, straw residue management, type of cultivation and direction, and vegetative buffers) in terms of mitigating sediment and phosphorus loss from winter-sown combinable cereal crops using three case study sites. To determine the cost of the approaches, simple financial spreadsheet models were constructed at both farm and regional levels. Taking into account crop areas, crop rotation margins per hectare were calculated to reflect the costs of crop establishment, fertiliser and agro-chemical applications, harvesting, and the associated labour and machinery costs. Variable and operating costs associated with each mitigation option were then incorporated to demonstrate the impact on the relevant crop enterprise and crop rotation margins. These costs were then compared to runoff, sediment and phosphorus loss data obtained from monitoring hillslope-length scale field plots. Each of the mitigation options explored in this study had potential for reducing sediment and phosphorus losses from arable land under cereal crops. Sediment losses were reduced from between 9 kg ha−1 to as much as 4780 kg ha−1 with a corresponding reduction in phosphorus loss from 0.03 kg ha−1 to 2.89 kg ha−1. In percentage terms reductions of phosphorus were between 9% and 99%. Impacts on crop rotation margins also varied. Minimum tillage resulted in cost savings (up to £50 ha−1) whilst other options showed increased costs (up to £19 ha−1 for straw residue incorporation). Overall, the results indicate that each of the options has potential for on-farm implementation. However, tramline management appeared to have the greatest potential for reducing runoff, sediment, and phosphorus losses from arable land (between 69% and 99%) and is likely to be considered cost-effective with only a small additional cost of £2–4 ha−1, although further work is needed to evaluate alternative tramline management methods. Tramline management is also the only option not incorporated within current policy mechanisms associated with reducing soil erosion and phosphorus loss and in light of its potential is an approach that should be encouraged once further evidence is available.
Resumo:
Nitrogen flows from European watersheds to coastal marine waters Executive summary Nature of the problem • Most regional watersheds in Europe constitute managed human territories importing large amounts of new reactive nitrogen. • As a consequence, groundwater, surface freshwater and coastal seawater are undergoing severe nitrogen contamination and/or eutrophication problems. Approaches • A comprehensive evaluation of net anthropogenic inputs of reactive nitrogen (NANI) through atmospheric deposition, crop N fixation,fertiliser use and import of food and feed has been carried out for all European watersheds. A database on N, P and Si fluxes delivered at the basin outlets has been assembled. • A number of modelling approaches based on either statistical regression analysis or mechanistic description of the processes involved in nitrogen transfer and transformations have been developed for relating N inputs to watersheds to outputs into coastal marine ecosystems. Key findings/state of knowledge • Throughout Europe, NANI represents 3700 kgN/km2/yr (range, 0–8400 depending on the watershed), i.e. five times the background rate of natural N2 fixation. • A mean of approximately 78% of NANI does not reach the basin outlet, but instead is stored (in soils, sediments or ground water) or eliminated to the atmosphere as reactive N forms or as N2. • N delivery to the European marine coastal zone totals 810 kgN/km2/yr (range, 200–4000 depending on the watershed), about four times the natural background. In areas of limited availability of silica, these inputs cause harmful algal blooms. Major uncertainties/challenges • The exact dimension of anthropogenic N inputs to watersheds is still imperfectly known and requires pursuing monitoring programmes and data integration at the international level. • The exact nature of ‘retention’ processes, which potentially represent a major management lever for reducing N contamination of water resources, is still poorly understood. • Coastal marine eutrophication depends to a large degree on local morphological and hydrographic conditions as well as on estuarine processes, which are also imperfectly known. Recommendations • Better control and management of the nitrogen cascade at the watershed scale is required to reduce N contamination of ground- and surface water, as well as coastal eutrophication. • In spite of the potential of these management measures, there is no choice at the European scale but to reduce the primary inputs of reactive nitrogen to watersheds, through changes in agriculture, human diet and other N flows related to human activity.
Resumo:
Restoration schemes aimed at enhancing plant species diversity of improved agricultural grassland have been a key feature of agri-environmental policy since the mid 1980s. Allied to this has been much research aimed at providing policy makers with guidelines on how best to manage grassland to restore botanical diversity. This research includes long-term studies of the consequences for grassland diversity of management techniques such as different hay cut dates, fertiliser additions, seed introductions and grazing regimes. Studies have also explored the role of introductions of Rhinanthus minor into species-poor swards to debilitate competitive grasses. While these studies have been successful in identifying some management features that control plant species diversity in agricultural grassland, they have taken a largely aboveground perspective on plant community dynamics.
Resumo:
Steady state and dynamic models have been developed and applied to the River Kennet system. Annual nitrogen exports from the land surface to the river have been estimated based on land use from the 1930s and the 1990s. Long term modelled trends indicate that there has been a large increase in nitrogen transport into the river system driven by increased fertiliser application associated with increased cereal production, increased population and increased livestock levels. The dynamic model INCA Integrated Nitrogen in Catchments. has been applied to simulate the day-to-day transport of N from the terrestrial ecosystem to the riverine environment. This process-based model generates spatial and temporal data and reproduces the observed instream concentrations. Applying the model to current land use and 1930s land use indicates that there has been a major shift in the short term dynamics since the 1930s, with increased river and groundwater concentrations caused by both non-point source pollution from agriculture and point source discharges. �
Resumo:
Some of the techniques used to model nitrogen (N) and phosphorus (P) discharges from a terrestrial catchment to an estuary are discussed and applied to the River Tamar and Tamar Estuary system in Southwest England, U.K. Data are presented for dissolved inorganic nutrient concentrations in the Tamar Estuary and compared with those from the contrasting, low turbidity and rapidly flushed Tweed Estuary in Northeast England. In the Tamar catchment, simulations showed that effluent nitrate loads for typical freshwater flows contributed less than 1% of the total N load. The effect of effluent inputs on ammonium loads was more significant (∼10%). Cattle, sheep and permanent grassland dominated the N catchment export, with diffuse-source N export greatly dominating that due to point sources. Cattle, sheep, permanent grassland and cereal crops generated the greatest rates of diffuse-source P export. This reflected the higher rates of P fertiliser applications to arable land and the susceptibility of bare, arable land to P export in wetter winter months. N and P export to the Tamar Estuary from human sewage was insignificant. Non-conservative behaviour of phosphate was particularly marked in the Tamar Estuary. Silicate concentrations were slightly less than conservative levels, whereas nitrate was essentially conservative. The coastal sea acted as a sink for these terrestrially derived nutrients. A pronounced sag in dissolved oxygen that was associated with strong nitrite and ammonium peaks occurred in the turbidity maximum region of the Tamar Estuary. Nutrient behaviour within the Tweed was very different. The low turbidity and rapid flushing ensured that nutrients there were essentially conservative, so that flushing of nutrients to the coastal zone from the river occurred with little estuarine modification.