166 resultados para fermentation technique
Resumo:
Surfactin is a bacterial lipopeptide produced by Bacillus subtilis and is a powerful surfactant, having also antiviral, antibacterial and antitumor properties. The recovery and purification of surfactin from complex fermentation broths is a major obstacle to its commercialization; therefore, a two-step membrane filtration process was developed using a lab scale tangential flow filtration (TFF) unit with 10 kDa MWCO regenerated cellulose (RC) and polyethersulfone (PES)membranes at three different transmembrane pressure (TMP) of 1.5 bar, 2.0 bar and 2.5 bar. Two modes of filtrations were studied, with and without cleaning of membranes prior to UF-2. In a first step of ultrafiltration (UF-1), surfactin was retained effectively by membranes at above its critical micelle concentration (CMC); subsequently in UF-2, the retentate micelles were disrupted by addition of 50% (v/v) methanol solution to allow recovery of surfactin in the permeate. Main protein contaminants were effectively retained by the membrane in UF-2. Flux of permeates, rejection coefficient (R) of surfactin and proteinwere measured during the filtrations. Overall the three different TMPs applied have no significant effect in the filtrations and PES is the more suitable membrane to selectively separate surfactin from fermentation broth, achieving high recovery and level of purity. In addition this two-step UF process is scalable for larger volume of samples without affecting the original functionality of surfactin, although membranes permeability can be affected due to exposure to methanolic solution used in UF-2.
Resumo:
An optimized protocol has been developed for the efficient and rapid genetic modification of sugar beet (Beta vulgaris L.). A polyethylene glycol-mediated DNA transformation technique could be applied to protoplast populations enriched specifically for a single totipotent cell type derived from stomatal guard cells, to achieve high transformation frequencies. Bialaphos resistance, conferred by the pat gene, produced a highly efficient selection system. The majority of plants were obtained within 8 to 9 weeks and were appropriate for plant breeding purposes. All were resistant to glufosinate-ammonium-based herbicides. Detailed genomic characterization has verified transgene integration, and progeny analysis showed Mendelian inheritance.
Resumo:
Reducing carbon conversion of ruminally degraded feed into methane increases feed efficiency and reduces emission of this potent greenhouse gas into the environment. Accurate, yet simple, predictions of methane production of ruminants on any feeding regime are important in the nutrition of ruminants, and in modeling methane produced by them. The current work investigated feed intake, digestibility and methane production by open-circuit respiration measurements in sheep fed 15 untreated, sodium hydroxide (NaOH) treated and anhydrous ammonia (NH3) treated wheat, barley and oat straws. In vitro fermentation characteristics of straws were obtained from incubations using the Hohenheim gas production system that measured gas production, true substrate degradability, short-chain fatty acid production and efficiency of microbial production from the ratio of truly degraded substrate to gas volume. In the 15 straws, organic matter (OM) intake and in vivo OM digestibility ranged from 563 to 1201 g and from 0.464 to 0.643, respectively. Total daily methane production ranged from 13.0 to 34.4 l, whereas methane produced/kg OM matter apparently digested in vivo varied from 35.0 to 61.8 l. The OM intake was positively related to total methane production (R2 = 0.81, P<0.0001), and in vivo OM digestibility was also positively associated with methane production (R2 = 0.67, P<0.001), but negatively associated with methane production/kg digestible OM intake (R2 = 0.61, P<0.001). In the in vitro incubations of the 15 straws, the ratio of acetate to propionate ranged from 2.3 to 2.8 (P<0.05) and efficiencies of microbial production ranged from 0.21 to 0.37 (P<0.05) at half asymptotic gas production. Total daily methane production, calculated from in vitro fermentation characteristics (i.e., true degradability, SCFA ratio and efficiency of microbial production) and OM intake, compared well with methane measured in the open-circuit respiration chamber (y = 2.5 + 0.86x, R2 = 0.89, P<0.0001, Sy.x = 2.3). Methane production from forage fed ruminants can be predicted accurately by simple in vitro incubations combining true substrate degradability and gas volume measurements, if feed intake is known.
Resumo:
A series of experiments was completed to investigate the impact of addition of enzymes at ensiling on in vitro rumen degradation of maize silage. Two commercial products, Depot 40 (D, Biocatalysts Ltd., Pontypridd, UK) and Liquicell 2500 (L, Specialty Enzymes and Biochemicals, Fresno, CA, USA), were used. In experiment 1, the pH optima over a pH range 4.0-6.8 and the stability of D and L under changing pH (4.0, 5.6, 6.8) and temperature (15 and 39 degreesC) conditions were determined. In experiment 2, D and L were applied at three levels to whole crop maize at ensiling, using triplicate 0.5 kg capacity laboratory minisilos. A completely randomized design with a factorial arrangement of treatments was used. One set of treatments was stored at room temperature, whereas another set was stored at 40 degreesC during the first 3 weeks of fermentation, and then stored at room temperature. Silages were opened after 120 days. Results from experiment I indicated that the xylanase activity of both products showed an optimal pH of about 5.6, but the response differed according to the enzyme, whereas the endoglucanase activity was inversely related to pH. Both products retained at least 70% of their xylanase activity after 48 h incubation at 15 or 39 degreesC. In experiment 2, enzymes reduced (P < 0.05) silage pH, regardless of storage temperature and enzyme level. Depol 40 reduced (P < 0.05) the starch contents of the silages, due to its high alpha-amylase activity. This effect was more noticeable in the silages stored at room temperature. Addition of L reduced (P < 0.05) neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents. In vitro rumen degradation, assessed using the Reading Pressure Technique (RPT), showed that L increased (P < 0.05) the initial 6 h gas production (GP) and organic matter degradability (OMD), but did not affect (P > 0.05) the final extent of OMD, indicating that this preparation acted on the rumen degradable material. In contrast, silages treated with D had reduced (P < 0.05) rates of gas production and OMD. These enzymes, regardless of ensiling temperature, can be effective in improving the nutritive quality of maize silage when applied at ensiling. However, the biochemical properties of enzymes (i.e., enzymic activities, optimum pH) may have a crucial role in dictating the nature of the responses. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A completely randomised study was completed to examine the influence of fibrolytic enzymes derived from psychrophilic, (F), mesophilic, (L) or thermophilic (Ta) sources, applied at ensiling, on the chemical characteristics and in vitro rumen fermentation of maize silage, assessed using the Reading Pressure Technique (RPT). Treatments, all in triplicate, consisted of untreated maize forage or treated with preparations F, L, Ta or a mixture (1: 1, v/v) of F and L (FL), at two levels each, and ensiled for 210 days in plastic mini-silos. Addition of enzymes L decreased (P < 0.05) silage pH relative to the control, whereas enzyme Ta tended (P < 0.10) to reduce it. Preparations F, L and Ta tended to reduce (P < 0.10) the fibre contents of the silages, with effects being attributable to a decrease in the cellulose fraction. Starch contents were reduced (P < 0.05) in the treatments including enzyme F. End-point (96 h) gas production (GP) values did not differ among treatments, suggesting that enzymes did not change the total amount of fermentable substrate. However, consistent with the decrease in starch contents, adding enzyme F reduced (P < 0.05) GP at most incubation times. Addition of enzymes increased (P < 0.05) the initial (6 h) organic matter degradation (OMD) levels in all but one treatment (F), with increases of 14, 19, and 26% for preparations L, Ta, and FL, respectively, averaged across levels. Furthermore, the addition of enzymes increased (P < 0.05) the soluble OM losses, however, these increases did not fully account for the initial increase in OMD. The latter suggests that enzymes increased solubility and also altered silage structure, making it more amenable to degradation by ruminal microorganisms. As a result of the increase in OMD, without a concomitant increase in GP, the fermentation efficiency was greatly increased (P < 0.05) in enzyme treatments. Addition of enzymes to maize at ensiling, particularly those from the mesophilic and thermophilic sources used here, have the potential to increase the initial rate of silage OMD. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A method is proposed to determine the extent of degradation in the rumen involving a two-stage mathematical modeling process. In the first stage, a statistical model shifts (or maps) the gas accumulation profile obtained using a fecal inoculum to a ruminal gas profile. Then, a kinetic model determines the extent of degradation in the rumen from the shifted profile. The kinetic model is presented as a generalized mathematical function, allowing any one of a number of alternative equation forms to be selected. This method might allow the gas production technique to become an approach for determining extent of degradation in the rumen, decreasing the need for surgically modified animals while still maintaining the link with the animal. Further research is needed before the proposed methodology can be used as a standard method across a range of feeds.
Resumo:
The objective of this work was to determine the rumen fermentation characteristics of maize land races used as forage in central Mexico. In vitro gas production (ml per 200 mg dry matter (DM)) incubations were carried out, and cumulative gas volumes were fitted to the Krishnamoorthy et al. (1991) model. The trial used a split-plot design with cultivation practices associated with maize colour (COL) as the main plot with three levels: white, yellow and black maize; growing periods (PER) were the split plots where PER1, PER2 and PER3 represented the first, second and third periods, respectively and two contrasting zones (Z1 = valley and Z2 = mountain) were used as blocking factors. The principal effects observed were associated with the maturity of the plants and potential gas production increased (P < 0.05) in stems (PER 1 = 51.8, PER2 = 56.3, PER3 = 58.4 ml per 200 mg DM) and in whole plant (PER 1 = 60.9, PER2 = 60.8, PER3= 70.9 ml per 200 mg DM). An inverse effect was observed with fermentation rates in leaves (P < 0.01) with 0.061, 0.053 and 0.0509 (per h) and in whole plant (P < 0.05) with 0.068, 0.057, 0.050 (per h) in PER1, PER2 and PER3 respectively. The digestibility of the neutral-detergent fibre (NDF) decreased with maturity especially in leaves (P < 0.05) with values of 0.71, 0.67 and 0.66 g/kg; in rachis (P < 0.01) 0.75, 0.72, and 0.65 in PER1, PER2 and PER3 respectively. The NDF content in leaves in leaves (668, 705 and 713 g/kg DM for PER1, PER2 and PER3, respectively), stems (580, 594 and 644 g/kg DM) and, husk (663, 774 and, 808 g/kg DM) increased (P < 0.05) with increasing plant maturity, rachis were significantly different between periods (P < 0.01). The structure with-the best nutritive characteristics was the husk, because it had the lowest fibre contents, especially in acid-detergent lignin, with values of 22.6, 28.6 and 37.6 g/kg DM in PER1, PER2 and PER3, respectively.
Resumo:
Advancing maturity of forage maize is associated with increases in the proportion of dry matter (DM) and starch and decreases in the proportions of structural carbohydrates in the ensiled crop. Three maize silages (286 (low, L), 329 (medium, M) and 379 (high, H) g DM per kg fresh weight) plus a concentrate formulated to give isonitrogenous intakes were offered to Holstein-Friesian steers fitted with a cannula in the dorsal sac of the rumen and a 'T' piece cannula in the proximal duodenum in an experiment with a cross-over design that allowed four collection periods. Nutrient flow to the duodenum was estimated using chromium-EDTA. Steers consumed approximately 0(.)6 kg DM per day less of diet L compared with the other two diets (P=0(.)026), resulting in less DM being digested (P=0(.)005) but digestibility did not differ between diets. Similar results were obtained for organic matter. There were no differences between diets in the intake or digestibility of neutral-detergent fibre. Intake, duodenal flow and faecal output of starch were greater for steers offered diets M and H compared with those given diet L (P < 0(.)05). In all diets rumen digestion contributed to over 90% of total digestion of starch, although rumen digestibility declined significantly with advancing maize maturity (P=0(.)002). Molar proportions of acetic acid were higher in diet H (P < 0(.)05) whilst proportions of propionic acid and n-butyric acid were higher in diets M and L. There were no significant differences between diets in mean rumen pH or ammonia concentrations. Mean circulating concentrations of insulin were higher (P=0(.)009) in cattle given diets L and M compared with diet H. There were no differences between diets in the mean circulating concentration of growth hormone, or the frequency, amplitude and duration of growth hormone pulses, or the mean circulating concentrations of IGF-1. Changes in forage composition that accompany advancing maize maturity affect overall silage digestion and circulating concentrations of insulin.
Resumo:
A modified chlorophyll fluorescence technique was evaluated as a rapid diagnostic test of the susceptibility of wheat cultivars to chlorotoluron. Two winter wheat cultivars (Maris Huntsman and Mercia) exhibited differential response to the herbicide. All of the parameters of chlorophyll fluorescence examined were strongly influenced by herbicide concentration. Additionally, the procedure adopted here for the examination of winter wheat cultivar sensitivity to herbicide indicated that the area above the fluorescence induction curve and the ratio F-V/F-M are appropriate chlorophyll fluorescence parameters for detection of differential herbicide response between wheat cultivars. The potential use of this technique as an alternative to traditional methods of screening new winter wheat cultivars for their response to photosynthetic inhibitor herbicide is demonstrated here.
Resumo:
Dry and mature tree fruits are a potential source of protein for goats in the semi-arid areas of southern Africa, but their chemical composition and feeding value is largely unknown. This study presents the chemical composition and in vitro fermentation of indehiscent whole fruits and separated seed and hull fractions from Acacia nilotica, Acacia erubescens, Acacia sieberiana, Acacia erioloba, Piliostigma thonningii and Dichrostachys cinerea trees. Results indicate that the N contents of whole fruits ranged between 13.5 g/kg DM (A. nilotica) and 27.1 g/kg DM (A. erubescens). Seeds had a higher N content than hulls for all tree species. A. nilotica, D. cinerea and P thonningii fruits had high levels of extractable phenolics (758, 458 and 299 g/kg DM, respectively). Soluble phenolics (SPh) and ytterbium precipitable phenolics (YbPh) levels were negatively correlated to in vitro gas production but positively correlated to in vitro organic matter degradability (iOMD). Partition factors for whole fruits at 48 h ranged between 3.6 mg/ml for A. erioloba and 7.8 mg/ml for A. nilotica. Seeds of A. erioloba, A. erubescens and P thonningii were consistently fermented more efficiently throughout the incubation period compared to their whole fruits or hulls. Estimating in vitro degradability of phenolic-rich substrates through filtration procedures can give erroneous results due to the loss of soluble phenolics, which are not necessarily degradable. The feeding value of fruits from D. cinerea and A. nilotica tree species may be reduced due to the presence of high levels of phenolics. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
As the ideal method of assessing the nutritive value of a feedstuff, namely offering it to the appropriate class of animal and recording the production response obtained, is neither practical nor cost effective a range of feed evaluation techniques have been developed. Each of these balances some degree of compromise with the practical situation against data generation. However, due to the impact of animal-feed interactions over and above that of feed composition, the target animal remains the ultimate arbitrator of nutritional value. In this review current in vitro feed evaluation techniques are examined according to the degree of animal-feed interaction. Chemical analysis provides absolute values and therefore differs from the majority of in vitro methods that simply rank feeds. However, with no host animal involvement, estimates of nutritional value are inferred by statistical association. In addition given the costs involved, the practical value of many analyses conducted should be reviewed. The in sacco technique has made a substantial contribution to both understanding rumen microbial degradative processes and the rapid evaluation of feeds, especially in developing countries. However, the numerous shortfalls of the technique, common to many in vitro methods, the desire to eliminate the use of surgically modified animals for routine feed evaluation, paralleled with improvements in in vitro techniques, will see this technique increasingly replaced. The majority of in vitro systems use substrate disappearance to assess degradation, however, this provides no information regarding the quantity of derived end-products available to the host animal. As measurement of volatile fatty acids or microbial biomass production greatly increases analytical costs, fermentation gas release, a simple and non-destructive measurement, has been used as an alternative. However, as gas release alone is of little use, gas-based systems, where both degradation and fermentation gas release are measured simultaneously, are attracting considerable interest. Alternative microbial inocula are being considered, as is the potential of using multi-enzyme systems to examine degradation dynamics. It is concluded that while chemical analysis will continue to form an indispensable part of feed evaluation, enhanced use will be made of increasingly complex in vitro systems. It is vital, however, the function and limitations of each methodology are fully understood and that the temptation to over-interpret the data is avoided so as to draw the appropriate conclusions. With careful selection and correct application in vitro systems offer powerful research tools with which to evaluate feedstuffs. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This review considers microbial inocula used in in vitro systems from the perspective of their ability to degrade or ferment a particular substrate, rather than the microbial species that it contains. By necessity, this required an examination of bacterial, protozoal and fungal populations of the rumen and hindgut with respect to factors influencing their activity. The potential to manipulate these populations through diet or sampling time are examined, as is inoculum preparation and level. The main alternatives to fresh rumen fluid (i.e., caecal digesta or faeces) are discussed with respect to end-point degradabilities and fermentation dynamics. Although the potential to use rumen contents obtained from donor animals at slaughter offers possibilities, the requirement to store it and its subsequent loss of activity are limitations. Statistical modelling of data, although still requiring a deal of developmental work, may offer an alternative approach. Finally, with respect to the range of in vitro methodologies and equipment employed, it is suggested that a degree of uniformity could be obtained through generation of a set of guidelines relating to the host animal, sampling technique and inoculum preparation. It was considered unlikely that any particular system would be accepted as the 'standard' procedure. However, before any protocol can be adopted, additional data are required (e.g., a method to assess inoculum 'quality' with respect to its fermentative and/or degradative activity), preparation/inoculation techniques need to be refined and a methodology to store inocula without loss of efficacy developed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Browse plants play an important role in providing feed for livestock in semi-arid rangelands of Africa. Chemical composition and in vitro ruminal fermentation of leaves collected from Acacia burkei, Acacia tortilis, Acacia nilotica, Dichrostachys cinerea and Ehretia obtusifolia in communal grazing lands in the lowveld of Swaziland is presented. Leaves were collected from trees located on two soil types (i.e., lithosol and vertisol) in the communal land but it had no effect on the chemical composition of tree leaves. The NDFom and ADFom content were highest in D. cinerea and A. burkei and lowest in E. obtusifolia and A. nilotica. Crude protein (CP) contents ranged between 108 g/kg and 122 g/kg DM. D. cinerea had the highest Ca and Mg content, while A. tortilis had the lowest. There were marked variations in K level amongst browse species, with A. tortilis (9.1 g/kg DM) having the highest value. The P, Zn and Fe did not differ between browse species. Soil type and tree species interaction impacted in vitro fermentation parameters. Extent of fermentation, as measured by 48 h cumulative gas production, and organic matter degradability was highest in E. obtusifolia leaves and lowest in D. cinerea leaves within soil type. Fermentation efficiency, as measured by partitioning factors, was highest in A. nilotica leaves. Leaves of E. obtusifolia could be a valuable supplementary feedstuff for ruminant livestock due to its in vitro fermentation characteristics as well as low fibre and moderate CP levels. (c) 2007 Elsevier B.V. All rights reserved.