68 resultados para fault diagnosis
Resumo:
Although the impact of autism spectrum disorders (ASDs) on the family is well recognized, the way mothers attempt to make sense of the diagnosis is largely unexplored. However, in other disabilities, attributions have been shown to predict a variety of outcomes including maternal wellbeing and engagement in treatment. Using Weiner's (198S) three-dimensional model, 16 mothers were interviewed to examine the nature and impact of their beliefs about their child's ASD using semi-structured interviews and measures of depression, parenting stress and expectations for their child's future. The findings suggested that mothers made a diverse and complex range of attributions that were consistent with Weiner's dimensions of locus of cause, stability and controllability. The nature of their attributions reflected particular difficulties associated with ASDs, such as uncertainties regarding cause and prognosis. Taking account of mothers' search for meaning will better enable professionals to support families following diagnosis.
Resumo:
This paper addresses the need for accurate predictions on the fault inflow, i.e. the number of faults found in the consecutive project weeks, in highly iterative processes. In such processes, in contrast to waterfall-like processes, fault repair and development of new features run almost in parallel. Given accurate predictions on fault inflow, managers could dynamically re-allocate resources between these different tasks in a more adequate way. Furthermore, managers could react with process improvements when the expected fault inflow is higher than desired. This study suggests software reliability growth models (SRGMs) for predicting fault inflow. Originally developed for traditional processes, the performance of these models in highly iterative processes is investigated. Additionally, a simple linear model is developed and compared to the SRGMs. The paper provides results from applying these models on fault data from three different industrial projects. One of the key findings of this study is that some SRGMs are applicable for predicting fault inflow in highly iterative processes. Moreover, the results show that the simple linear model represents a valid alternative to the SRGMs, as it provides reasonably accurate predictions and performs better in many cases.
Resumo:
In this work, a fault-tolerant control scheme is applied to a air handling unit of a heating, ventilation and air-conditioning system. Using the multiple-model approach it is possible to identify faults and to control the system under faulty and normal conditions in an effective way. Using well known techniques to model and control the process, this work focuses on the importance of the cost function in the fault detection and its influence on the reconfigurable controller. Experimental results show how the control of the terminal unit is affected in the presence a fault, and how the recuperation and reconfiguration of the control action is able to deal with the effects of faults.
Resumo:
An n-dimensional Mobius cube, 0MQ(n) or 1MQ(n), is a variation of n-dimensional cube Q(n) which possesses many attractive properties such as significantly smaller communication delay and stronger graph-embedding capabilities. In some practical situations, the fault tolerance of a distributed memory multiprocessor system can be measured more precisely by the connectivity of the underlying graph under forbidden fault set models. This article addresses the connectivity of 0MQ(n)/1MQ(n), under two typical forbidden fault set models. We first prove that the connectivity of 0MQ(n)/1MQ(n) is 2n - 2 when the fault set does not contain the neighborhood of any vertex as a subset. We then prove that the connectivity of 0MQ(n)/1MQ(n) is 3n - 5 provided that the neighborhood of any vertex as well as that of any edge cannot fail simultaneously These results demonstrate that 0MQ(n)/1MQ(n) has the same connectivity as Q(n) under either of the previous assumptions.