91 resultados para fatigue loading sequence
Resumo:
This article presents a statistical method for detecting recombination in DNA sequence alignments, which is based on combining two probabilistic graphical models: (1) a taxon graph (phylogenetic tree) representing the relationship between the taxa, and (2) a site graph (hidden Markov model) representing interactions between different sites in the DNA sequence alignments. We adopt a Bayesian approach and sample the parameters of the model from the posterior distribution with Markov chain Monte Carlo, using a Metropolis-Hastings and Gibbs-within-Gibbs scheme. The proposed method is tested on various synthetic and real-world DNA sequence alignments, and we compare its performance with the established detection methods RECPARS, PLATO, and TOPAL, as well as with two alternative parameter estimation schemes.
Resumo:
Inter-simple sequence repeat (ISSR) analysis and aggressiveness assays were used to investigate genetic variability within a global collection of Fusarium culmorum isolates. A set of four ISSR primers were tested, of which three primers amplified a total of 37 bands out of which 30 (81%) were polymorphic. The intraspecific diversity was high, ranging from four to 28 different ISSR genotypes for F. culmorum depending on the primer. The combined analysis of ISSR data revealed 59 different genotypes clustered into seven distinct clades amongst 75 isolates of F. culmorum examined. All the isolates were assayed to test their aggressiveness on a winter wheat cv. 'Armada'. A significant quantitative variation for aggressiveness was found among the isolates. The ISSR and aggressiveness variation existed on a macro- as well as micro-geographical scale. The data suggested a long-range dispersal of F. culmorum and indicated that this fungus may have been introduced into Canada from Europe. In addition to the high level of intraspecific diversity observed in F. culmorum, the index of multilocus association calculated using ISSR data indicated that reproduction in F. culmorum cannot be exclusively clonal and recombination is likely to occur.
Resumo:
Population subdivision complicates analysis of molecular variation. Even if neutrality is assumed, three evolutionary forces need to be considered: migration, mutation, and drift. Simplification can be achieved by assuming that the process of migration among and drift within subpopulations is occurring fast compared to Mutation and drift in the entire population. This allows a two-step approach in the analysis: (i) analysis of population subdivision and (ii) analysis of molecular variation in the migrant pool. We model population subdivision using an infinite island model, where we allow the migration/drift parameter Theta to vary among populations. Thus, central and peripheral populations can be differentiated. For inference of Theta, we use a coalescence approach, implemented via a Markov chain Monte Carlo (MCMC) integration method that allows estimation of allele frequencies in the migrant pool. The second step of this approach (analysis of molecular variation in the migrant pool) uses the estimated allele frequencies in the migrant pool for the study of molecular variation. We apply this method to a Drosophila ananassae sequence data set. We find little indication of isolation by distance, but large differences in the migration parameter among populations. The population as a whole seems to be expanding. A population from Bogor (Java, Indonesia) shows the highest variation and seems closest to the species center.
Resumo:
Specific monomer sequences in aromatic copolyimides are recognized through their -stacking and hydrogen-bonding interactions with a sterically and electronically complementary molecular tweezer. These interactions enable the tweezer molecule to read monomer sequences comprising up to 27 aromatic rings by multiple adjacent binding to neighboring sites on the polymer chain.
Resumo:
A novel type of tweezer molecule containing electron-rich 2-pyrenyloxy arms has been designed to exploit intramolecular hydrogen bonding in stabilising a preferred conformation for supramolecular complexation to complementary sequences in aromatic copolyimides. This tweezer-conformation is demonstrated by single-crystal X-ray analyses of the tweezer molecule itself and of its complex with an aromatic diimide model-compound. In terms of its ability to bind selectively to polyimide chains, the new tweezer molecule shows very high sensitivity to sequence effects. Thus, even low concentrations of tweezer relative to diimide units (<2.5 mol%) are sufficient to produce dramatic, sequence-related splittings of the pyromellitimide proton NMR resonances. These induced resonance-shifts arise from ring-current shielding of pyromellitimide protons by the pyrenyloxy arms of the tweezer-molecule, and the magnitude of such shielding is a function of the tweezer-binding constant for any particular monomer sequence. Recognition of both short-range and long-range sequences is observed, the latter arising from cumulative ring-current shielding of diimide protons by tweezer molecules binding at multiple adjacent sites on the copolymer chain.
Resumo:
Pyrene-based molecular tweezers show sequence-specific binding to aromatic polyimides through sterically-controlled donor-acceptor pi-stacking and hydrogen bonding; H-1 NMR spectra of tweezer-complexes with polyimides having different sequence-restrictions show conclusively that the detection of long range sequence-information results from multiple tweezer-binding at adjacent imide residues.
Resumo:
Single crystal X-ray diffraction studies reveal that the incorporation of meta-amino benzoic acid in the middle of a helix forming hexapeptide sequence such as in peptide I Boc-Ile(1)-Aib(2)-Val(3)-m-ABA(4)-Ile(5)-Aib(6)-Leu(7)-OMe (Aib: alpha-amino isobutyric acid: m-ABA: meta-amino benzoic acid) breaks the helix propagation to produce a turn-linker-turn (T-L-T) foldamer in the solid state. In the crystalline state two conformational isomers of peptide I self-assemble in antiparallel fashion through intermolecular hydrogen bonds and aromatic pi-pi interactions to form a molecular duplex. The duplexes are further interconnected through intermolecular hydrogen bonds to form a layer of peptides. The layers are stacked one on top of the other through van der Waals interactions to form hydrophilic channels filled with solvent methanol. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Two types of poly(epsilon-caprolactone (CLo)-co-poly(epsilon-caprolactam (CLa)) copolymers were prepared by catalyzed hydrolytic ring-opening polymerization. Both cyclic comonomers were added simultaneously in the reaction medium for the First type or materials where copolymers have a random distribution of counits, as evidenced by H-1 and C-13 NMR. For the second type of copolymers, the cyclic comonomers were added sequentially, yielding diblock poly(ester-amides). The materials were characterized by differential scanning calorimetry (DSC), wide- and small-angle X-ray scattering (WAXS and SAXS), and transmission and scanning electron microscopies (TEM and SEM). Their biodegradation in compost was also studied. All copolymers were found to be miscible by the absence of structure in the melt. TEM revealed that all samples exhibited a crystalline lamellar morphology. DSC and WAXS showed that in a wide composition range (CLo contents from 6 to 55%) only the CLa units were capable of crystallization in the random copolymers. The block copolymer samples only experience a small reduction of crystallization and melting temperature with composition, and this was attributed to a dilution effect caused by the miscible noncrystalline CLo units. The comparison between block and random copolymers provided a unique opportunity to distinguish the dilution effect of the CLo units on the crystallization and melting of the polyamide phase from the chemical composition effect in the random copolymers case, where the CLa sequences are interrupted statistically by the CLo units, making the crystallization of the polyamide strongly composition dependent. Finally, the enzymatic degradation of the copolymers in composted soil indicate a synergistic behavior where much faster degradation was obtained for random copolymers witha CLo content larger than 30% than for neat PCL.
Resumo:
A series of novel polyaromatic dendrimers that feature tris-(2-ethylamino)amine as the central core unit has been synthesized up to the third generation by employing a convergent growth strategy. The building blocks 1,3-diamino-2-hydroxypropane and 4-carboxybenzaldehyde were used for dendron construction, a process that involved the cyclic repetition of esterification, oxidation and selective amidation steps. Molecular modelling of this class of dendrimers has been used to predict potential solution state conformations employing molecular mechanics and molecular dynamic simulations. In addition, the results of preliminary metal binding studies using the first generation dendritic system are also outlined. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Based upon specialised experience of rope mechanics spanning over 20 years, this paper reviews the processes of degradation and fatigue that are relevant to hoisting ropes in mines. The review is brought up to date with an account of the most recent work in this field, which identifies a torsional fatigue process and quantifies the impact of degradation upon the residual service life. A proper understanding of these processes is important in determining how different parameters of hoist design and operation interact to determine rope life. This knowledge is also important in informing decisions relating to rope discard based upon observed condition, as well is identifying the critical features that must be quantified reliably during inspection.
Resumo:
The paper describes a method whereby the distribution of fatigue damage along riser tensioner ropes is calculated, taking account of heave motion, set tension, system geometry, tidal range and rope specification. From these data the distribution of damage along the rope is calculated for a given time period using a Miner’s summation method. This information can then be used to help the operator decide on the length of rope to ‘slip and cut’ whereby a length from the end of the rope is removed and the rope moved through the system from a storage drum such that sections of rope that have already suffered significant fatigue damage are not moved to positions where there is another peak in the distribution. There are two main advantages to be gained by using the fatigue damage model. The first is that it shows the amount of fatigue damage accumulating at different points along the rope, enabling the most highly damaged section to be removed well before failure. The second is that it makes for greater efficiency, as damage can be spread more evenly along the rope over time, avoiding the need to scrap long sections of undamaged rope.
Resumo:
We present results on the growth of damage in 29 fatigue tests of human femoral cortical bone from four individuals, aged 53–79. In these tests we examine the interdependency of stress, cycles to failure, rate of creep strain, and rate of modulus loss. The behavior of creep rates has been reported recently for the same donors as an effect of stress and cycles (Cotton, J. R., Zioupos, P., Winwood, K., and Taylor, M., 2003, "Analysis of Creep Strain During Tensile Fatigue of Cortical Bone," J. Biomech. 36, pp. 943–949). In the present paper we first examine how the evolution of damage (drop in modulus per cycle) is associated with the stress level or the "normalized stress" level (stress divided by specimen modulus), and results show the rate of modulus loss fits better as a function of normalized stress. However, we find here that even better correlations can be established between either the cycles to failure or creep rates versus rates of damage than any of these three measures versus normalized stress. The data indicate that damage rates can be excellent predictors of fatigue life and creep strain rates in tensile fatigue of human cortical bone for use in practical problems and computer simulations.
Resumo:
During fatigue tests of cortical bone specimens, at the unload portion of the cycle (zero stress) non-zero strains occur and progressively accumulate as the test progresses. This non-zero strain is hypothesised to be mostly, if not entirely, describable as creep. This work examines the rate of accumulation of this strain and quantifies its stress dependency. A published relationship determined from creep tests of cortical bone (Journal of Biomechanics 21 (1988) 623) is combined with knowledge of the stress history during fatigue testing to derive an expression for the amount of creep strain in fatigue tests. Fatigue tests on 31 bone samples from four individuals showed strong correlations between creep strain rate and both stress and “normalised stress” (σ/E) during tensile fatigue testing (0–T). Combined results were good (r2=0.78) and differences between the various individuals, in particular, vanished when effects were examined against normalised stress values. Constants of the regression showed equivalence to constants derived in creep tests. The universality of the results, with respect to four different individuals of both sexes, shows great promise for use in computational models of fatigue in bone structures.