46 resultados para experimental models
Resumo:
Kinetic studies on the AR (aldose reductase) protein have shown that it does not behave as a classical enzyme in relation to ring aldose sugars. As with non-enzymatic glycation reactions, there is probably a free radical element involved derived from monosaccharide autoxidation. in the case of AR, there is free radical oxidation of NADPH by autoxidizing monosaccharides, which is enhanced in the presence of the NADPH-binding protein. Thus any assay for AR based on the oxidation of NADPH in the presence of autoxidizing monosaccharides is invalid, and tissue AR measurements based on this method are also invalid, and should be reassessed. AR exhibits broad specificity for both hydrophilic and hydrophobic aldehydes that suggests that the protein may be involved in detoxification. The last thing we would want to do is to inhibit it. ARIs (AR inhibitors) have a number of actions in the cell which are not specific, and which do not involve them binding to AR. These include peroxy-radical scavenging and effects of metal ion chelation. The AR/ARI story emphasizes the importance of correct experimental design in all biocatalytic experiments. Developing the use of Bayesian utility functions, we have used a systematic method to identify the optimum experimental designs for a number of kinetic model data sets. This has led to the identification of trends between kinetic model types, sets of design rules and the key conclusion that such designs should be based on some prior knowledge of K-m and/or the kinetic model. We suggest an optimal and iterative method for selecting features of the design such as the substrate range, number of measurements and choice of intermediate points. The final design collects data suitable for accurate modelling and analysis and minimizes the error in the parameters estimated, and is suitable for simple or complex steady-state models.
Resumo:
In areas such as drug development, clinical diagnosis and biotechnology research, acquiring details about the kinetic parameters of enzymes is crucial. The correct design of an experiment is critical to collecting data suitable for analysis, modelling and deriving the correct information. As classical design methods are not targeted to the more complex kinetics being frequently studied, attention is needed to estimate parameters of such models with low variance. We demonstrate that a Bayesian approach (the use of prior knowledge) can produce major gains quantifiable in terms of information, productivity and accuracy of each experiment. Developing the use of Bayesian Utility functions, we have used a systematic method to identify the optimum experimental designs for a number of kinetic model data sets. This has enabled the identification of trends between kinetic model types, sets of design rules and the key conclusion that such designs should be based on some prior knowledge of K-M and/or the kinetic model. We suggest an optimal and iterative method for selecting features of the design such as the substrate range, number of measurements and choice of intermediate points. The final design collects data suitable for accurate modelling and analysis and minimises the error in the parameters estimated. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Experimental data for the title reaction were modeled using master equation (ME)/RRKM methods based on the Multiwell suite of programs. The starting point for the exercise was the empirical fitting provided by the NASA (Sander, S. P.; Finlayson-Pitts, B. J.; Friedl, R. R.; Golden, D. M.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Molina, M. J.; Moortgat, G. K.; Orkin, V. L.; Ravishankara, A. R. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15; Jet Propulsion Laboratory: Pasadena, California, 2006)(1) and IUPAC (Atkinson, R.; Baulch, D. L.; Cox, R. A.: R. F. Hampson, J.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data. 2000, 29, 167) 2 data evaluation panels, which represents the data in the experimental pressure ranges rather well. Despite the availability of quite reliable parameters for these calculations (molecular vibrational frequencies (Parthiban, S.; Lee, T. J. J. Chem. Phys. 2000, 113, 145)3 and a. value (Orlando, J. J.; Tyndall, G. S. J. Phys. Chem. 1996, 100,. 19398)4 of the bond dissociation energy, D-298(BrO-NO2) = 118 kJ mol(-1), corresponding to Delta H-0(circle) = 114.3 kJ mol(-1) at 0 K) and the use of RRKM/ME methods, fitting calculations to the reported data or the empirical equations was anything but straightforward. Using these molecular parameters resulted in a discrepancy between the calculations and the database of rate constants of a factor of ca. 4 at, or close to, the low-pressure limit. Agreement between calculation and experiment could be achieved in two ways, either by increasing Delta H-0(circle) to an unrealistically high value (149.3 kJ mol(-1)) or by increasing
Resumo:
Reports that heat processing of foods induces the formation of acrylamide heightened interest in the chemistry, biochemistry, and safety of this compound. Acrylamide-induced neurotoxicity, reproductive toxicity, genotoxicity, and carcinogenicity are potential human health risks based on animal studies. Because exposure of humans to acrylamide can come from both external sources and the diet, there exists a need to develop a better understanding of its formation and distribution in food and its role in human health. To contribute to this effort, experts from eight countries have presented data on the chemistry, analysis, metabolism, pharmacology, and toxicology of acrylamide. Specifically covered are the following aspects: exposure from the environment and the diet; biomarkers of exposure; risk assessment; epidemiology; mechanism of formation in food; biological alkylation of amino acids, peptides, proteins, and DNA by acrylamide and its epoxide metabolite glycidamide; neurotoxicity, reproductive toxicity, and carcinogenicity; protection against adverse effects; and possible approaches to reducing levels in food. Cross-fertilization of ideas among several disciplines in which an interest in acrylamide has developed, including food science, pharmacology, toxicology, and medicine, will provide a better understanding of the chemistry and biology of acrylamide in food, and can lead to the development of food processes to decrease the acrylamide content of the diet.
Resumo:
The aim of this review paper is to present experimental methodologies and the mathematical approaches used to determine effective diffusivities of solutes in food materials. The paper commences by describing the diffusion phenomena related to solute mass transfer in foods and effective diffusivities. It then focuses on the mathematical formulation for the calculation of effective diffusivities considering different diffusion models based on Fick's second law of diffusion. Finally, experimental considerations for effective diffusivity determination are elucidated primarily based on the acquirement of a series of solute content versus time curves appropriate to the equation model chosen. Different factors contributing to the determination of the effective diffusivities such as the structure of food material, temperature, diffusion solvent, agitation, sampling, concentration and different techniques used are considered. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Crumpets are made by heating fermented batter on a hot plate at around 230°C. The characteristic structure dominated by vertical pores develops rapidly: structure has developed throughout around 75% of the product height within 30s, which is far faster than might be expected from transient heat conduction through the batter. Cooking is complete within around 3 min. Image analysis based on results from X-ray tomography shows that the voidage fraction is approximately constant and that there is continual coalescence between the larger pores throughout the product although there is also a steady level of small bubbles trapped within the solidified batter. We report here experimental studies which shed light on some of the mechanisms responsible for this structure, together with some models of key phenomena.Three aspects are discussed here: the role of gas (carbon dioxide and nitrogen) nuclei in initiating structure development; convective heat transfer inside the developing pores; and the kinetics of setting the batter into an elastic solid structure. It is shown conclusively that the small bubbles of carbon dioxide resulting from the fermentation stage play a crucial role as nuclei for pore development: without these nuclei, the result is not a porous structure, but rather a solid, elastic, inedible, gelatinized product. These nuclei are also responsible for the tiny bubbles which are set in the final product. The nuclei form the source of the dominant pore structure which is largely driven by the, initially explosive, release of water vapour from the batter together with the desorption of dissolved carbon dioxide. It is argued that the rapid evaporation, transport and condensation of steam within the growing pores provides an important mechanism, as in a heat pipe, for rapid heat transfer, and models for this process are developed and tested. The setting of the continuous batter phase is essential for final product quality: studies using differential scanning calorimetry and on the kinetics of change in the visco-elastic properties of the batter suggest that this process is driven by the kinetics of gelatinization. Unlike many thermally driven food processes the rates of heating are such that gelatinization kinetics cannot be neglected. The implications of these results for modelling and for the development of novel structures are discussed.
Resumo:
Nonlinear system identification is considered using a generalized kernel regression model. Unlike the standard kernel model, which employs a fixed common variance for all the kernel regressors, each kernel regressor in the generalized kernel model has an individually tuned diagonal covariance matrix that is determined by maximizing the correlation between the training data and the regressor using a repeated guided random search based on boosting optimization. An efficient construction algorithm based on orthogonal forward regression with leave-one-out (LOO) test statistic and local regularization (LR) is then used to select a parsimonious generalized kernel regression model from the resulting full regression matrix. The proposed modeling algorithm is fully automatic and the user is not required to specify any criterion to terminate the construction procedure. Experimental results involving two real data sets demonstrate the effectiveness of the proposed nonlinear system identification approach.
Resumo:
New construction algorithms for radial basis function (RBF) network modelling are introduced based on the A-optimality and D-optimality experimental design criteria respectively. We utilize new cost functions, based on experimental design criteria, for model selection that simultaneously optimizes model approximation, parameter variance (A-optimality) or model robustness (D-optimality). The proposed approaches are based on the forward orthogonal least-squares (OLS) algorithm, such that the new A-optimality- and D-optimality-based cost functions are constructed on the basis of an orthogonalization process that gains computational advantages and hence maintains the inherent computational efficiency associated with the conventional forward OLS approach. The proposed approach enhances the very popular forward OLS-algorithm-based RBF model construction method since the resultant RBF models are constructed in a manner that the system dynamics approximation capability, model adequacy and robustness are optimized simultaneously. The numerical examples provided show significant improvement based on the D-optimality design criterion, demonstrating that there is significant room for improvement in modelling via the popular RBF neural network.
Resumo:
Objectives. Theoretic modeling and experimental studies suggest that functional electrical stimulation (FES) can improve trunk balance in spinal cord injured subjects. This can have a positive impact on daily life, increasing the volume of bimanual workspace, improving sitting posture, and wheelchair propulsion. A closed loop controller for the stimulation is desirable, as it can potentially decrease muscle fatigue and offer better rejection to disturbances. This paper proposes a biomechanical model of the human trunk, and a procedure for its identification, to be used for the future development of FES controllers. The advantage over previous models resides in the simplicity of the solution proposed, which makes it possible to identify the model just before a stimulation session ( taking into account the variability of the muscle response to the FES). Materials and Methods. The structure of the model is based on previous research on FES and muscle physiology. Some details could not be inferred from previous studies, and were determined from experimental data. Experiments with a paraplegic volunteer were conducted in order to measure the moments exerted by the trunk-passive tissues and artificially stimulated muscles. Data for model identification and validation also were collected. Results. Using the proposed structure and identification procedure, the model could adequately reproduce the moments exerted during the experiments. The study reveals that the stimulated trunk extensors can exert maximal moment when the trunk is in the upright position. In contrast, previous studies show that able-bodied subjects can exert maximal trunk extension when flexed forward. Conclusions. The proposed model and identification procedure are a successful first step toward the development of a model-based controller for trunk FES. The model also gives information on the trunk in unique conditions, normally not observable in able-bodied subjects (ie, subject only to extensor muscles contraction).
Resumo:
In this paper we are mainly concerned with the development of efficient computer models capable of accurately predicting the propagation of low-to-middle frequency sound in the sea, in axially symmetric (2D) and in fully 3D environments. The major physical features of the problem, i.e. a variable bottom topography, elastic properties of the subbottom structure, volume attenuation and other range inhomogeneities are efficiently treated. The computer models presented are based on normal mode solutions of the Helmholtz equation on the one hand, and on various types of numerical schemes for parabolic approximations of the Helmholtz equation on the other. A new coupled mode code is introduced to model sound propagation in range-dependent ocean environments with variable bottom topography, where the effects of an elastic bottom, of volume attenuation, surface and bottom roughness are taken into account. New computer models based on finite difference and finite element techniques for the numerical solution of parabolic approximations are also presented. They include an efficient modeling of the bottom influence via impedance boundary conditions, they cover wide angle propagation, elastic bottom effects, variable bottom topography and reverberation effects. All the models are validated on several benchmark problems and versus experimental data. Results thus obtained were compared with analogous results from standard codes in the literature.
Resumo:
It is sometimes argued that experimental economists do not have to worry about external validity so long as the design sticks closely to a theoretical model. This position mistakes the model for the theory. As a result, applied economics designs often study phenomena distinct from their stated objects of inquiry. Because the implemented models are abstract, they may provide improbable analogues to their stated subject matter. This problem is exacerbated by the relational character of the social world, which also sets epistemic limits for the social science laboratory more generally.
Resumo:
A solution has been found to the long-standing problem of experimental modelling of the interfacial instability in aluminium reduction cells. The idea is to replace the electrolyte overlaying molten aluminium with a mesh of thin rods supplying current down directly into the liquid metal layer. This eliminates electrolysis altogether and all the problems associated with it, such as high temperature, chemical aggressiveness of media, products of electrolysis, the necessity for electrolyte renewal, high power demands, etc. The result is a room temperature, versatile laboratory model which simulates Sele-type, rolling pad interfacial instability. Our new, safe laboratory model enables detailed experimental investigations to test the existing theoretical models for the first time.
Resumo:
1. Closed Ecological Systems (CES) are small manmade ecosystems which do not have any material exchange with the surrounding environment. Recent ecological and technological advances enable successful establishment and maintenance of CES, making them a suitable tool for detecting and measuring subtle feedbacks and mechanisms. 2. As a part of an analogue (physical) C cycle modelling experiment, we developed a non-intrusive methodology to control the internal environment and to monitor atmospheric CO2 concentration inside 16 replicated CES. Whilst maintaining an air-tight seal of all CES, this approach allowed for access to the CO2 measuring equipment for periodic re-calibration and repairs. 3. To ensure reliable cross-comparison of CO2 observations between individual CES units and to minimise the cost of the system, only one CO2 sampling unit was used. An ADC BioScientific OP-2 (open-path) analyser mounted on a swinging arm was passing over a set of 16 measuring cells. Each cell was connected to an individual CES with air continuously circulating between them. 4. Using this setup, we were able to continuously measure several environmental variables and CO2 concentration within each closed system, allowing us to study minute effects of changing temperature on C fluxes within each CES. The CES and the measuring cells showed minimal air leakage during an experimental run lasting, on average, 3 months. The CO2 analyser assembly performed reliably for over 2 years, however an early iteration of the present design proved to be sensitive to positioning errors. 5. We indicate how the methodology can be further improved and suggest possible avenues where future CES based research could be applied.
Resumo:
A nonlinear regression structure comprising a wavelet network and a linear term is proposed for system identification. The theoretical foundation of the approach is laid by proving that radial wavelets are orthogonal to linear functions. A constructive procedure for building such models is described and the approach is tested with experimental data.
Resumo:
The idea of incorporating multiple models of linear rheology into a superensemble, to forge a consensus forecast from the individual model predictions, is investigated. The relative importance of the individual models in the so-called multimodel superensemble (MMSE) was inferred by evaluating their performance on a set of experimental training data, via nonlinear regression. The predictive ability of the MMSE model was tested by comparing its predictions on test data that were similar (in-sample) and dissimilar (out-of-sample) to the training data used in the calibration. For the in-sample forecasts, we found that the MMSE model easily outperformed the best constituent model. The presence of good individual models greatly enhanced the MMSE forecast, while the presence of some bad models in the superensemble also improved the MMSE forecast modestly. While the performance of the MMSE model on the out-of-sample training data was not as spectacular, it demonstrated the robustness of this approach.