44 resultados para ethanol vapour,
Resumo:
It has been shown previously that one member of the Met Office Hadley Centre single-parameter perturbed physics ensemble – the so-called "low entrainment parameter" member – has a much higher climate sensitivity than other individual parameter perturbations. Here we show that the concentration of stratospheric water vapour in this member is over three times higher than observations, and, more importantly for climate sensitivity, increases significantly when climate warms. The large surface temperature response of this ensemble member is more consistent with stratospheric humidity change, rather than upper tropospheric clouds as has been previously suggested. The direct relationship between the bias in the control state (elevated stratospheric humidity) and the cause of the high climate sensitivity (a further increase in stratospheric humidity) lends further doubt as to the realism of this particular integration. This, together with other evidence, lowers the likelihood that the climate system's physical sensitivity is significantly higher than the likely upper range quoted in the Intergovernmental Panel on Climate Change's Fourth Assessment Report.
Resumo:
We describe a novel mechanism that can significantly lower the amplitude of the climatic response to certain large volcanic eruptions and examine its impact with a coupled ocean-atmosphere climate model. If sufficiently large amounts of water vapour enter the stratosphere, a climatically significant amount of water vapour can be left over in the lower stratosphere after the eruption, even after sulphate aerosol formation. This excess stratospheric humidity warms the tropospheric climate, and acts to balance the climatic cooling induced by the volcanic aerosol, especially because the humidity anomaly lasts for a period that is longer than the residence time of aerosol in the stratosphere. In particular, northern hemisphere high latitude cooling is reduced in magnitude. We discuss this mechanism in the context of the discrepancy between the observed and modelled cooling following the Krakatau eruption in 1883. We hypothesize that moist coignimbrite plumes caused by pyroclastic flows travelling over ocean rather than land, resulting from an eruption close enough to the ocean, might provide the additional source of stratospheric water vapour.
Resumo:
Nonlinear adjustment toward long-run price equilibrium relationships in the sugar-ethanol-oil nexus in Brazil is examined. We develop generalized bivariate error correction models that allow for cointegration between sugar, ethanol, and oil prices, where dynamic adjustments are potentially nonlinear functions of the disequilibrium errors. A range of models are estimated using Bayesian Monte Carlo Markov Chain algorithms and compared using Bayesian model selection methods. The results suggest that the long-run drivers of Brazilian sugar prices are oil prices and that there are nonlinearities in the adjustment processes of sugar and ethanol prices to oil price but linear adjustment between ethanol and sugar prices.
Resumo:
In certain applications copolymer P123 (E21P67E21) is dissolved in water-ethanol mixtures, initially to form micellar solutions and eventually to gel. For P123 in 10, 20, and 30 wt % aqueous ethanol we used dynamic light scattering from dilute solutions to confirm micellization, oscillatory rheometry, and visual observation of mobility (tube inversion) to determine gel formation in concentrated solutions and small-angle X-ray scattering (SAXS) to determine gel structure. Except for solutions in 30 wt % aqueous ethanol, a clear-turbid transition was encountered on heating dilute and concentrated micellar solutions alike, and as for solutions in water alone (Chaibundit et al. Langmuir 2007, 23, 9229) this could be ascribed to formation of wormlike micelles. Dense clouding, typical of phase separation, was observed at higher temperatures. Regions of isotropic and birefringent gel were defined for concentrated solutions and shown (by SAXS) to have Cubic (fcc and hcp) and hexagonal structures, consistent with packed spherical and elongated micelles, respectively. The cubic gels (0, 10, and 20 wt % ethanol) were clear, while the hex gels were either turbid (0 and 10 wt % ethanol), turbid enclosing a clear region (20 wt % ethanol), or entirely clear (30 wt % ethanol). The SAXS profile was unchanged between turbid and clear regions of the 20 wt % ethanol gel. Temperature scans of dynamic moduli showed (as expected) a clear distinction between high-modulus cubic gels (G'(max) approximate to 20-30 kPa) and lower modulus hex gels (G'(max) < 10 kPa).
Resumo:
Recent laboratory observations and advances in theoretical quantum chemistry allow a reappraisal of the fundamental mechanisms that determine the water vapour self-continuum absorption throughout the infrared and millimetre wave spectral regions. By starting from a framework that partitions bimolecular interactions between water molecules into free-pair states, true bound and quasi-bound dimers, we present a critical review of recent observations, continuum models and theoretical predictions. In the near-infrared bands of the water monomer, we propose that spectral features in recent laboratory-derived self-continuum can be well explained as being due to a combination of true bound and quasi-bound dimers, when the spectrum of quasi-bound dimers is approximated as being double the broadened spectrum of the water monomer. Such a representation can explain both the wavenumber variation and the temperature dependence. Recent observations of the self-continuum absorption in the windows between these near-infrared bands indicate that widely used continuum models can underestimate the true strength by around an order of magnitude. An existing far-wing model does not appear able to explain the discrepancy, and although a dimer explanation is possible, currently available observations do not allow a compelling case to be made. In the 8–12 micron window, recent observations indicate that the modern continuum models either do not properly represent the temperature dependence, the wavelength variation, or both. The temperature dependence is suggestive of a transition from the dominance of true bound dimers at lower temperatures to quasibound dimers at higher temperatures. In the mid- and far-infrared spectral region, recent theoretical calculations indicate that true bound dimers may explain at least between 20% and 40% of the observed self-continuum. The possibility that quasi-bound dimers could cause an additional contribution of the same size is discussed. Most recent theoretical considerations agree that water dimers are likely to be the dominant contributor to the self-continuum in the mm-wave spectral range.
Resumo:
This study uses an analytical model, based on the cooling-to-space approximation, and a fixed dynamical heating model to investigate the structure of the stratospheric cooling that occurs in response to a uniform increase in stratospheric water vapour (SWV). At all latitudes, the largest cooling occurs in the lower stratosphere and decreases in magnitude with height. The cooling is strongly enhanced in the Extratropics compared to the Tropics. This is markedly different to the case of an increase in CO2, which causes maximum cooling near the stratopause and a small warming in the tropical lower stratosphere. The qualitative differences in the structure of the cooling can be explained by the smaller opacity of water vapour bands in the stratosphere compared to CO2. The small opacity means that the magnitude of the initial heating rate perturbation only decreases by a factor of four between the upper and lower stratosphere for a SWV perturbation. Therefore, to balance the heating rate perturbation, the largest temperature change is required in the lower stratosphere. Increasing the background concentration of SWV causes the water vapour bands to become more opaque. For a SWV perturbation applied to a background SWV concentration ≥30 ppmv, the heating rate perturbation and temperature change structurally resemble those from an increase in CO2. In the Extratropics, the lower height of the tropopause is found to cause the enhancement in the cooling at those latitudes. By controlling the depth of atmosphere which adjusts to the SWV perturbation, the tropopause height affects the net exchange of radiation between the layers in the stratosphere as they cool. The latitudinal gradient in upwelling infrared radiation at the tropopause and variations in the background temperature are found to have only a minor effect on the structure of the stratospheric temperature response to a change in SWV.
Resumo:
In most near-infrared atmospheric windows, absorption of solar radiation is dominated by the water vapor self-continuum and yet there is a paucity of measurements in these windows. We report new laboratory measurements of the self-continuum absorption at temperatures between 293 and 472 K and pressures from 0.015 to 5 atm in four near-infrared windows between 1 and 4 m (10000-2500 cm-1); the measurements are made over a wider range of wavenumber, temperatures and pressures than any previous measurements. They show that the self-continuum in these windows is typically one order of magnitude stronger than given in representations of the continuum widely used in climate and weather prediction models. These results are also not consistent with current theories attributing the self continuum within windows to the far-wings of strong spectral lines in the nearby water vapor absorption bands; we suggest that they are more consistent with water dimers being the major contributor to the continuum. The calculated global-average clear-sky atmospheric absorption of solar radiation is increased by 0.75 W/m2 (which is about 1% of the total clear-sky absorption) by using these new measurements as compared to calculations with the MT_CKD-2.5 self-continuum model.
Resumo:
Water vapour modulates energy flows in Earth's climate system through transfer of latent heat by evaporation and condensation and by modifying the flows of radiative energy both in the longwave and shortwave portions of the electromagnetic spectrum. This article summarizes the role of water vapour in Earth's energy flows with particular emphasis on (1) the powerful thermodynamic constraint of the Clausius Clapeyron equation, (2) dynamical controls on humidity above the boundary layer (or free-troposphere), (3) uncertainty in continuum absorption in the relatively transparent "window" regions of the radiative spectrum and (4) implications for changes in the atmospheric hydrological cycle.
Resumo:
The water vapour continuum is characterised by absorption that varies smoothly with wavelength, from the visible to the microwave. It is present within the rotational and vibrational–rotational bands of water vapour, which consist of large numbers of narrow spectral lines, and in the many ‘windows’ between these bands. The continuum absorption in the window regions is of particular importance for the Earth’s radiation budget and for remote-sensing techniques that exploit these windows. Historically, most attention has focused on the 8–12 μm (mid-infrared) atmospheric window, where the continuum is relatively well-characterised, but there have been many fewer measurements within bands and in other window regions. In addition, the causes of the continuum remain a subject of controversy. This paper provides a brief historical overview of the development of understanding of the continuum and then reviews recent developments, with a focus on the near-infrared spectral region. Recent laboratory measurements in near-infrared windows, which reveal absorption typically an order of magnitude stronger than in widely used continuum models, are shown to have important consequences for remote-sensing techniques that use these windows for retrieving cloud properties.
Resumo:
We propose a new satellite mission to deliver high quality measurements of upper air water vapour. The concept centres around a LiDAR in limb sounding by occultation geometry, designed to operate as a very long path system for differential absorption measurements. We present a preliminary performance analysis with a system sized to send 75 mJ pulses at 25 Hz at four wavelengths close to 935 nm, to up to 5 microsatellites in a counter-rotating orbit, carrying retroreflectors characterized by a reflected beam divergence of roughly twice the emitted laser beam divergence of 15 µrad. This provides water vapour profiles with a vertical sampling of 110 m; preliminary calculations suggest that the system could detect concentrations of less than 5 ppm. A secondary payload of a fairly conventional medium resolution multispectral radiometer allows wide-swath cloud and aerosol imaging. The total weight and power of the system are estimated at 3 tons and 2,700 W respectively. This novel concept presents significant challenges, including the performance of the lasers in space, the tracking between the main spacecraft and the retroreflectors, the refractive effects of turbulence, and the design of the telescopes to achieve a high signal-to-noise ratio for the high precision measurements. The mission concept was conceived at the Alpbach Summer School 2010.
Resumo:
This study focuses on the mechanisms underlying water and heat transfer in upper soil layers, and their effects on soil physical prognostic variables and the individual components of the energy balance. The skill of the JULES (Joint UK Land Environment Simulator) land surface model (LSM) to simulate key soil variables, such as soil moisture content and surface temperature, and fluxes such as evaporation, is investigated. The Richards equation for soil water transfer, as used in most LSMs, was updated by incorporating isothermal and thermal water vapour transfer. The model was tested for three sites representative of semi-arid and temperate arid climates: the Jornada site (New Mexico, USA), Griffith site (Australia) and Audubon site (Arizona, USA). Water vapour flux was found to contribute significantly to the water and heat transfer in the upper soil layers. This was mainly due to isothermal vapour diffusion; thermal vapour flux also played a role at the Jornada site just after rainfall events. Inclusion of water vapour flux had an effect on the diurnal evolution of evaporation, soil moisture content and surface temperature. The incorporation of additional processes, such as water vapour flux among others, into LSMs may improve the coupling between the upper soil layers and the atmosphere, which in turn could increase the reliability of weather and climate predictions.
Resumo:
Solar-pointing Fourier transform infrared (FTIR) spectroscopy offers the capability to measure both the fine scale and broadband spectral structure of atmospheric transmission simultaneously across wide spectral regions. It is therefore suited to the study of both water vapour monomer and continuum absorption behaviours. However, in order to properly address this issue, it is necessary to radiatively calibrate the FTIR instrument response. A solar-pointing high-resolution FTIR spectrometer was deployed as part of the ‘Continuum Absorption by Visible and Infrared radiation and its Atmospheric Relevance’ (CAVIAR) consortium project. This paper describes the radiative calibration process using an ultra-high-temperature blackbody and the consideration of the related influence factors. The result is a radiatively calibrated measurement of the solar irradiation at the ground across the IR region from 2000 to 10 000 cm−1 with an uncertainty of between 3.3 and 5.9 per cent. This measurement is shown to be in good general agreement with a radiative-transfer model. The results from the CAVIAR field measurements are being used in ongoing studies of atmospheric absorbers, in particular the water vapour continuum.