78 resultados para equilibrium asset pricing models with latent variables


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forecasts of precipitation and water vapor made by the Met Office global numerical weather prediction (NWP) model are evaluated using products from satellite observations by the Special Sensor Microwave Imager/Sounder (SSMIS) and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) for June–September 2011, with a focus on tropical areas (308S–308N). Consistent with previous studies, the predicted diurnal cycle of precipitation peaks too early (by ;3 h) and the amplitude is too strong over both tropical ocean and land regions. Most of the wet and dry precipitation biases, particularly those over land, can be explained by the diurnal-cycle discrepancies. An overall wet bias over the equatorial Pacific and Indian Oceans and a dry bias over the western Pacific warmpool and India are linked with similar biases in the climate model, which shares common parameterizations with the NWP version. Whereas precipitation biases develop within hours in the NWP model, underestimates in water vapor (which are assimilated by the NWP model) evolve over the first few days of the forecast. The NWP simulations are able to capture observed daily-to-intraseasonal variability in water vapor and precipitation, including fluctuations associated with tropical cyclones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The level of agreement between climate model simulations and observed surface temperature change is a topic of scientific and policy concern. While the Earth system continues to accumulate energy due to anthropogenic and other radiative forcings, estimates of recent surface temperature evolution fall at the lower end of climate model projections. Global mean temperatures from climate model simulations are typically calculated using surface air temperatures, while the corresponding observations are based on a blend of air and sea surface temperatures. This work quantifies a systematic bias in model-observation comparisons arising from differential warming rates between sea surface temperatures and surface air temperatures over oceans. A further bias arises from the treatment of temperatures in regions where the sea ice boundary has changed. Applying the methodology of the HadCRUT4 record to climate model temperature fields accounts for 38% of the discrepancy in trend between models and observations over the period 1975–2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the changes in the length of commercial property leases over the last decade and presents an analysis of the consequent investment and occupational pricing implications for commercial property investmentsIt is argued that the pricing implications of a short lease to an investor are contingent upon the expected costs of the letting termination to the investor, the probability that the letting will be terminated and the volatility of rental values.The paper examines the key factors influencing these variables and presents a framework for incorporating their effects into pricing models.Approaches to their valuation derived from option pricing are critically assessed. It is argued that such models also tend to neglect the price effects of specific risk factors such as tenant circumstances and the terms of break clause. Specific risk factors have a significant bearing on the probability of letting termination and on the level of the resultant financial losses. The merits of a simulation methododology are examined for rental and capital valuations of short leases and properties with break clauses.It is concluded that in addition to the rigour of its internal logic, the success of any methodology is predicated upon the accuracy of the inputs.The lack of reliable data on patterns in, and incidence of, lease termination and the lack of reliable time series of historic property performance limit the efficacy of financial models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flow dynamics of crystal-rich high-viscosity magma is likely to be strongly influenced by viscous and latent heat release. Viscous heating is observed to play an important role in the dynamics of fluids with temperature-dependent viscosities. The growth of microlite crystals and the accompanying release of latent heat should play a similar role in raising fluid temperatures. Earlier models of viscous heating in magmas have shown the potential for unstable (thermal runaway) flow as described by a Gruntfest number, using an Arrhenius temperature dependence for the viscosity, but have not considered crystal growth or latent heating. We present a theoretical model for magma flow in an axisymmetric conduit and consider both heating effects using Finite Element Method techniques. We consider a constant mass flux in a 1-D infinitesimal conduit segment with isothermal and adiabatic boundary conditions and Newtonian and non-Newtonian magma flow properties. We find that the growth of crystals acts to stabilize the flow field and make the magma less likely to experience a thermal runaway. The additional heating influences crystal growth and can counteract supercooling from degassing-induced crystallization and drive the residual melt composition back towards the liquidus temperature. We illustrate the models with results generated using parameters appropriate for the andesite lava dome-forming eruption at Soufriere Hills Volcano, Montserrat. These results emphasize the radial variability of the magma. Both viscous and latent heating effects are shown to be capable of playing a significant role in the eruption dynamics of Soufriere Hills Volcano. Latent heating is a factor in the top two kilometres of the conduit and may be responsible for relatively short-term (days) transients. Viscous heating is less restricted spatially, but because thermal runaway requires periods of hundreds of days to be achieved, the process is likely to be interrupted. Our models show that thermal evolution of the conduit walls could lead to an increase in the effective diameter of flow and an increase in flux at constant magma pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A flux-difference splitting method is presented for the inviscid terms of the compressible flow equations for chemical non-equilibrium gases

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated. To date, no com- parison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the methods and first results from an extensive international comparison of 33 models are presented. The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas. The degree of complexity included in the models is outlined and impacts on model performance are discussed. During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling ap- proaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations. There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler models perform as well as the more complex models based on all statistical measures. Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-factor approaches to analysis of real estate returns have, since the pioneering work of Chan, Hendershott and Sanders (1990), emphasised a macro-variables approach in preference to the latent factor approach that formed the original basis of the arbitrage pricing theory. With increasing use of high frequency data and trading strategies and with a growing emphasis on the risks of extreme events, the macro-variable procedure has some deficiencies. This paper explores a third way, with the use of an alternative to the standard principal components approach – independent components analysis (ICA). ICA seeks higher moment independence and maximises in relation to a chosen risk parameter. We apply an ICA based on kurtosis maximisation to weekly US REIT data using a kurtosis maximising algorithm. The results show that ICA is successful in capturing the kurtosis characteristics of REIT returns, offering possibilities for the development of risk management strategies that are sensitive to extreme events and tail distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a general model to price VIX futures contracts. The model is adapted to test both the constant elasticity of variance (CEV) and the Cox–Ingersoll–Ross formulations, with and without jumps. Empirical tests on VIX futures prices provide out-of-sample estimates within 2% of the actual futures price for almost all futures maturities. We show that although jumps are present in the data, the models with jumps do not typically outperform the others; in particular, we demonstrate the important benefits of the CEV feature in pricing futures contracts. We conclude by examining errors in the model relative to the VIX characteristics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many numerical models for weather prediction and climate studies are run at resolutions that are too coarse to resolve convection explicitly, but too fine to justify the local equilibrium assumed by conventional convective parameterizations. The Plant-Craig (PC) stochastic convective parameterization scheme, developed in this paper, solves this problem by removing the assumption that a given grid-scale situation must always produce the same sub-grid-scale convective response. Instead, for each timestep and gridpoint, one of the many possible convective responses consistent with the large-scale situation is randomly selected. The scheme requires as input the large-scale state as opposed to the instantaneous grid-scale state, but must nonetheless be able to account for genuine variations in the largescale situation. Here we investigate the behaviour of the PC scheme in three-dimensional simulations of radiative-convective equilibrium, demonstrating in particular that the necessary space-time averaging required to produce a good representation of the input large-scale state is not in conflict with the requirement to capture large-scale variations. The resulting equilibrium profiles agree well with those obtained from established deterministic schemes, and with corresponding cloud-resolving model simulations. Unlike the conventional schemes the statistics for mass flux and rainfall variability from the PC scheme also agree well with relevant theory and vary appropriately with spatial scale. The scheme is further shown to adapt automatically to changes in grid length and in forcing strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ice cloud representation in general circulation models remains a challenging task, due to the lack of accurate observations and the complexity of microphysical processes. In this article, we evaluate the ice water content (IWC) and ice cloud fraction statistical distributions from the numerical weather prediction models of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office, exploiting the synergy between the CloudSat radar and CALIPSO lidar. Using the last three weeks of July 2006, we analyse the global ice cloud occurrence as a function of temperature and latitude and show that the models capture the main geographical and temperature-dependent distributions, but overestimate the ice cloud occurrence in the Tropics in the temperature range from −60 °C to −20 °C and in the Antarctic for temperatures higher than −20 °C, but underestimate ice cloud occurrence at very low temperatures. A global statistical comparison of the occurrence of grid-box mean IWC at different temperatures shows that both the mean and range of IWC increases with increasing temperature. Globally, the models capture most of the IWC variability in the temperature range between −60 °C and −5 °C, and also reproduce the observed latitudinal dependencies in the IWC distribution due to different meteorological regimes. Two versions of the ECMWF model are assessed. The recent operational version with a diagnostic representation of precipitating snow and mixed-phase ice cloud fails to represent the IWC distribution in the −20 °C to 0 °C range, but a new version with prognostic variables for liquid water, ice and snow is much closer to the observed distribution. The comparison of models and observations provides a much-needed analysis of the vertical distribution of IWC across the globe, highlighting the ability of the models to reproduce much of the observed variability as well as the deficiencies where further improvements are required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper compares the performance of artificial neural networks (ANNs) with that of the modified Black model in both pricing and hedging Short Sterling options. Using high frequency data, standard and hybrid ANNs are trained to generate option prices. The hybrid ANN is significantly superior to both the modified Black model and the standard ANN in pricing call and put options. Hedge ratios for hedging Short Sterling options positions using Short Sterling futures are produced using the standard and hybrid ANN pricing models, the modified Black model, and also standard and hybrid ANNs trained directly on the hedge ratios. The performance of hedge ratios from ANNs directly trained on actual hedge ratios is significantly superior to those based on a pricing model, and to the modified Black model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider forecasting with factors, variables and both, modeling in-sample using Autometrics so all principal components and variables can be included jointly, while tackling multiple breaks by impulse-indicator saturation. A forecast-error taxonomy for factor models highlights the impacts of location shifts on forecast-error biases. Forecasting US GDP over 1-, 4- and 8-step horizons using the dataset from Stock and Watson (2009) updated to 2011:2 shows factor models are more useful for nowcasting or short-term forecasting, but their relative performance declines as the forecast horizon increases. Forecasts for GDP levels highlight the need for robust strategies, such as intercept corrections or differencing, when location shifts occur as in the recent financial crisis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate alternative robust approaches to forecasting, using a new class of robust devices, contrasted with equilibrium-correction models. Their forecasting properties are derived facing a range of likely empirical problems at the forecast origin, including measurement errors, impulses, omitted variables, unanticipated location shifts and incorrectly included variables that experience a shift. We derive the resulting forecast biases and error variances, and indicate when the methods are likely to perform well. The robust methods are applied to forecasting US GDP using autoregressive models, and also to autoregressive models with factors extracted from a large dataset of macroeconomic variables. We consider forecasting performance over the Great Recession, and over an earlier more quiescent period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Monte Carlo Independent Column Approximation (McICA) is a flexible method for representing subgrid-scale cloud inhomogeneity in radiative transfer schemes. It does, however, introduce conditional random errors but these have been shown to have little effect on climate simulations, where spatial and temporal scales of interest are large enough for effects of noise to be averaged out. This article considers the effect of McICA noise on a numerical weather prediction (NWP) model, where the time and spatial scales of interest are much closer to those at which the errors manifest themselves; this, as we show, means that noise is more significant. We suggest methods for efficiently reducing the magnitude of McICA noise and test these methods in a global NWP version of the UK Met Office Unified Model (MetUM). The resultant errors are put into context by comparison with errors due to the widely used assumption of maximum-random-overlap of plane-parallel homogeneous cloud. For a simple implementation of the McICA scheme, forecasts of near-surface temperature are found to be worse than those obtained using the plane-parallel, maximum-random-overlap representation of clouds. However, by applying the methods suggested in this article, we can reduce noise enough to give forecasts of near-surface temperature that are an improvement on the plane-parallel maximum-random-overlap forecasts. We conclude that the McICA scheme can be used to improve the representation of clouds in NWP models, with the provision that the associated noise is sufficiently small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Satellite based top-of-atmosphere (TOA) and surface radiation budget observations are combined with mass corrected vertically integrated atmospheric energy divergence and tendency from reanalysis to infer the regional distribution of the TOA, atmospheric and surface energy budget terms over the globe. Hemispheric contrasts in the energy budget terms are used to determine the radiative and combined sensible and latent heat contributions to the cross-equatorial heat transports in the atmosphere (AHT_EQ) and ocean (OHT_EQ). The contrast in net atmospheric radiation implies an AHT_EQ from the northern hemisphere (NH) to the southern hemisphere (SH) (0.75 PW), while the hemispheric difference in sensible and latent heat implies an AHT_EQ in the opposite direction (0.51 PW), resulting in a net NH to SH AHT_EQ (0.24 PW). At the surface, the hemispheric contrast in the radiative component (0.95 PW) dominates, implying a 0.44 PW SH to NH OHT_EQ. Coupled model intercomparison project phase 5 (CMIP5) models with excessive net downward surface radiation and surface-to-atmosphere sensible and latent heat transport in the SH relative to the NH exhibit anomalous northward AHT_EQ and overestimate SH tropical precipitation. The hemispheric bias in net surface radiative flux is due to too much longwave surface radiative cooling in the NH tropics in both clear and all-sky conditions and excessive shortwave surface radiation in the SH subtropics and extratropics due to an underestimation in reflection by clouds.