92 resultados para energy use


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Chartered Institute of Building Service Engineers (CIBSE) produced a technical memorandum (TM36) presenting research on future climate impacting building energy use and thermal comfort. One climate projection for each of four CO2 emissions scenario were used in TM36, so providing a deterministic outlook. As part of the UK Climate Impacts Programme (UKCIP) probabilistic climate projections are being studied in relation to building energy simulation techniques. Including uncertainty in climate projections is considered an important advance to climate impacts modelling and is included in the latest UKCIP data (UKCP09). Incorporating the stochastic nature of these new climate projections in building energy modelling requires a significant increase in data handling and careful statistical interpretation of the results to provide meaningful conclusions. This paper compares the results from building energy simulations when applying deterministic and probabilistic climate data. This is based on two case study buildings: (i) a mixed-mode office building with exposed thermal mass and (ii) a mechanically ventilated, light-weight office building. Building (i) represents an energy efficient building design that provides passive and active measures to maintain thermal comfort. Building (ii) relies entirely on mechanical means for heating and cooling, with its light-weight construction raising concern over increased cooling loads in a warmer climate. Devising an effective probabilistic approach highlighted greater uncertainty in predicting building performance, depending on the type of building modelled and the performance factors under consideration. Results indicate that the range of calculated quantities depends not only on the building type but is strongly dependent on the performance parameters that are of interest. Uncertainty is likely to be particularly marked with regard to thermal comfort in naturally ventilated buildings.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Commercial kitchens are one of the most profligate users of gas, water and electricity in the UK and can leave a large carbon footprint. It is estimated that the total energy consumption of Britain’s catering industry is in excess of 21,600 million kWh per year. In order to facilitate appropriate energy reduction within licensed restaurants, energy use must be translated into a form that can be compared between kitchens to enable operators to assess how they are improving and to allow rapid identification of facilities which require action. A review of relevant literature is presented and current benchmarking methods are discussed in order to assist in the development and categorisation of benchmarking energy reduction in commercial kitchens. Energy use within UK industry leading brands is discussed for the purpose of benchmarking in terms of factors such as size and output.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The UK Government's Department for Energy and Climate Change has been investigating the feasibility of developing a national energy efficiency data framework covering both domestic and non-domestic buildings. Working closely with the Energy Saving Trust and energy suppliers, the aim is to develop a data framework to monitor changes in energy efficiency, develop and evaluate programmes and improve information available to consumers. Key applications of the framework are to understand trends in built stock energy use, identify drivers and evaluate the success of different policies. For energy suppliers, it could identify what energy uses are growing, in which sectors and why. This would help with market segmentation and the design of products. For building professionals, it could supplement energy audits and modelling of end-use consumption with real data and support the generation of accurate and comprehensive benchmarks. This paper critically examines the results of the first phase of work to construct a national energy efficiency data-framework for the domestic sector focusing on two specific issues: (a) drivers of domestic energy consumption in terms of the physical nature of the dwellings and socio-economic characteristics of occupants and (b) the impact of energy efficiency measures on energy consumption.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Existing buildings contribute greatly to global energy use and greenhouse gas emissions. In the UK, about 18% of carbon emissions are generated by non-domestic buildings; sustainable building refurbishment can play an important role in reducing carbon emissions. This paper looks at the performance of a recently refurbished 5-storey office building in London, in terms of energy consumption as well as occupants’ satisfaction. Pre- and post-occupancy evaluation studies were conducted using online questionnaire surveys and energy consumption evaluation. Results from pre-occupancy and post-occupancy evaluation studies showed that employees, in general, were more satisfied with their work environment at the refurbished building than with that of their previous office. Employees’ self-reported productivity improved after the move to Elms House. These surveys showed a positive relationship between employees’ satisfaction with their work environment and their self-reported productivity, well-being and enjoyment at work. The factor that contributed to increasing employee satisfaction the most was: better use of interior space. Although the refurbishment was a success in terms of reducing energy consumption per m2, the performance gap was almost 3 times greater than that estimated. Unregulated loads, problems with building control, ineffective use of space and occupants’ behaviour are argued to be reasons for this gap.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Academic and industrial literature concerning the energy use of commercial kitchens is scarce. Electricity consumption data were collected from distribution board current transformers in a sample of fourteen UK public house-restaurants. This was set up to identify patterns of appliance use as well as to assess the total energy consumption of these establishments. The electricity consumption in the selected commercial kitchens was significantly higher than current literature estimates. On average, 63% of the premises’ electricity consumption was attributed to the catering activity. Key appliances that contributed to the samples average daily electricity consumption of the kitchen were identified as refrigeration (70 kWh, 41%), fryers (11 kWh, 13%), combination ovens (35 kWh, 12%), bain maries (27 kWh, 9%) and grills (37 kWh, 12%). Behavioural factors and poor maintenance were identified as major contributors to excessive electricity usage with potential savings of 70% and 45% respectively. Initiatives are required to influence operator behaviour, such as the expansion of mandatory energy labelling, improved feedback information and the use of behaviour change campaigns. Strict maintenance protocols and more appropriate sizing of refrigeration would be of great benefit to energy reduction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Different treatments that could be implemented in the home environ-ment are evaluated with the objective of reaching a more rational and efficient use of energy. We consider that a detailed knowledge of energy-consuming behaviour is paramount for the development and implementation of new technologies, services and even policies that could result in more rational energy use. The proposed evaluation methodology is based on the development of economic experiments implemented in an experimental economics laboratory, where the behaviour of individuals when making decisions related to energy use in the domestic environment can be tested.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A body of research suggests that the provision of energy feedback information to building users can elicit significant energy reductions through behaviour change. However, most studies have focused on energy use in homes and the assessment of interventions and technologies, to the neglect of the non-domestic context and broader issues arising from the introduction of feedback technologies. To address this gap, a non-domestic case study explores the delivery of personalized energy feedback to office workers through a novel system utilizing wireless technologies. The research demonstrates advantages of monitoring occupancy and quantifying energy use from specific behaviours as a basis for effective energy feedback; this is particularly important where there are highly disaggregated forms of energy use and a range of locations for that activity to take place. Quantitative and qualitative data show that personalized feedback can help individuals identify energy reduction opportunities. However, the analysis also highlights important contextual barriers and issues that need to be addressed when utilizing feedback technologies in the workplace. If neglected, these issues may limit the effective take-up of feedback interventions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Surface Urban Energy and Water Balance Scheme (SUEWS) is evaluated at two locations in the UK: a dense urban site in the centre of London and a residential suburban site in Swindon. Eddy covariance observations of the turbulent fluxes are used to assess model performance over a twoyear period (2011-2013). The distinct characteristics of the sites mean their surface energy exchanges differ considerably. The model suggests the largest differences can be attributed to surface cover (notably the proportion of vegetated versus impervious area) and the additional energy supplied by human activities. SUEWS performs better in summer than winter, and better at the suburban site than the dense urban site. One reason for this is the bias towards suburban summer field campaigns in observational data used to parameterise this (and other) model(s). The suitability of model parameters (such as albedo, energy use and water use) for the UK sites is considered and, where appropriate, alternative values are suggested. An alternative parameterisation for the surface conductance is implemented, which permits greater soil moisture deficits before evaporation is restricted at non-irrigated sites. Accounting for seasonal variation in the estimation of storage heat flux is necessary to obtain realistic wintertime fluxes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Even minor changes in user activity can bring about significant energy savings within built space. Many building performance assessment methods have been developed, however these often disregard the impact of user behavior (i.e. the social, cultural and organizational aspects of the building). Building users currently have limited means of determining how sustainable they are, in context of the specific building structure and/or when compared to other users performing similar activities, it is therefore easy for users to dismiss their energy use. To support sustainability, buildings must be able to monitor energy use, identify areas of potential change in the context of user activity and provide contextually relevant information to facilitate persuasion management. If the building is able to provide users with detailed information about how specific user activity that is wasteful, this should provide considerable motivation to implement positive change. This paper proposes using a dynamic and temporal semantic model, to populate information within a model of persuasion, to manage user change. By semantically mapping a building, and linking this to persuasion management we suggest that: i) building energy use can be monitored and analyzed over time; ii) persuasive management can be facilitated to move user activity towards sustainability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Domestic gardens provide a significant component of urban green infrastructure but their relative contribution to eco-system service provision remains largely un-quantified. ‘Green infrastructure’ itself is often ill-defined, posing problems for planners to ascertain what types of green infrastructure provide greatest benefit and under what circumstances. Within this context the relative merits of gardens are unclear; however, at a time of greater urbanization where private gardens are increasingly seen as a ‘luxury’, it is important to define their role precisely. Hence, the nature of this review is to interpret existing information pertaining to gardens /gardening per se, identify where they may have a unique role to play and to highlight where further research is warranted. The review suggests that there are significant differences in both form and management of domestic gardens which radically influence the benefits. Nevertheless, gardens can play a strong role in improving the environmental impact of the domestic curtilage, e.g. by insulating houses against temperature extremes they can reduce domestic energy use. Gardens also improve localized air cooling, help mitigate flooding and provide a haven for wildlife. Less favourable aspects include contributions of gardens and gardening to greenhouse gas emissions, misuse of fertilizers and pesticides, and introduction of alien plant species. Due to the close proximity to the home and hence accessibility for many, possibly the greatest benefit of the domestic garden is on human health and well-being, but further work is required to define this clearly within the wider context of green infrastructure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays utilising the proper HVAC system is essential both in extreme weather conditions and dense buildings design. Hydraulic loops are the most common parts in all air conditioning systems. This article aims to investigate the performance of different hydraulic loop arrangements in variable flow systems. Technical, economic and environmental assessments have been considered in this process. A dynamic system simulation is generated to evaluate the system performance and an economic evaluation is conducted by whole life cost assessment. Moreover, environmental impacts have been studied by considering the whole life energy consumption, CO2 emission, the embodied energy and embodied CO2 of the system components. Finally, decision-making in choosing the most suitable hydraulic system among five well-known alternatives has been proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper analyses the trends of the changing environmental effects within growing megacities as their diameters exceed 50–100 km and their populations rise beyond 30 million people. The authors consider how these effects are influenced by climate change, to which urban areas themselves contribute, caused by their increasing greenhouse gas emissions associated with rapidly expanding energy use. Other environmental and social factors are assessed, quantitatively and qualitatively, using detailed modelling of urban mesoscale meteorology, which shows how these factors can lead to large conurbations becoming more vulnerable to climatic and environmental hazards. The paper discusses the likely changes in meteorological and hydrological hazards in urban areas, both as the climate changes and the sizes of urban areas grow. Examples are given of how these risks are being reduced through innovations in warning and response systems, planning and infrastructure design, which should include refuges against extreme natural disasters. Policies are shown to be more effective when they are integrated and based on substantial community involvement. Some conclusions are drawn regarding how policies for the natural and artificial environment and for reducing many kinds of climate and hazard risk are related to future designs and planning of infrastructure and open spaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The built environment in China is required to achieve a 50% reduction in carbon emissions by 2020 against the 1980 design standard. A particular challenge is how to maintain acceptable comfort conditions through the hot humid summers and cold desiccating winters of its continental climate regions. Fully air-conditioned sealed envelopes, often fully glazed, are becoming increasingly common in these regions. Remedial strategies involve technical refinements to the air-handling equipment and a contribution from renewable energy sources in an attempt to achieve the prescribed net reduction in energy use. However an alternative hybrid environmental design strategy is developed in this research project. It exploits observed temperate periods of weeks, days, even hours in duration to free-run an office and exhibition building configured to promote natural stack ventilation when ambient conditions permit and mechanical ventilation when conditions require it, the two modes delivered through the same physical infrastructure. The proposal is modelled in proprietary software and the methodology adopted is described. The challenge is compounded by its first practical application to an existing reinforced concrete frame originally designed to receive a highly glazed envelope. This original scheme is reviewed in comparison. Furthermore the practical delivery of the proposal value engineered out a proportion of the ventilation stacks. The likely consequence of this for the environmental performance of the building is investigated through a sensitivity study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extreme weather events, including heatwaves, are predicted to increase in both frequency and severity over the coming decades. Low house building rates and a growing population mean there is a need to adapt existing dwellings. Research presented here uses dynamic thermal simulation to model the effect of passive heatwave mitigating interventions for UK dwellings. Interventions include a range of additions and modifications to solar shading, insulation and ventilation. Results are presented for typical end and mid terrace houses, with four orientations, two occupancy profiles and using weather data from the 2003 heatwave. Results show the effectiveness of interventions that reduce solar gains through the building fabric, such as external wall insulation and solar reflective coatings. Internal wall insulation is shown to be less effective and can increase the overheating problem in some cases. Control of solar gains through glazing, using shutters and fixed shading, are also effective, particularly for south, east and west-facing rooms. Results are also presented which demonstrate how it is possible to select combinations of interventions that both eliminate overheating and reduce space heating energy use. The cost of interventions is also considered in the final analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper provides a comparative study of the performance of cross-flow and counter-flow M-cycle heat exchangers for dew point cooling. It is recognised that evaporative cooling systems offer a low energy alternative to conventional air conditioning units. Recently emerged dew point cooling, as the renovated evaporative cooling configuration, is claimed to have much higher cooling output over the conventional evaporative modes owing to use of the M-cycle heat exchangers. Cross-flow and counter-flow heat exchangers, as the available structures for M-cycle dew point cooling processing, were theoretically and experimentally investigated to identify the difference in cooling effectiveness of both under the parallel structural/operational conditions, optimise the geometrical sizes of the exchangers and suggest their favourite operational conditions. Through development of a dedicated computer model and case-by-case experimental testing and validation, a parametric study of the cooling performance of the counter-flow and cross-flow heat exchangers was carried out. The results showed the counter-flow exchanger offered greater (around 20% higher) cooling capacity, as well as greater (15%–23% higher) dew-point and wet-bulb effectiveness when equal in physical size and under the same operating conditions. The cross-flow system, however, had a greater (10% higher) Energy Efficiency (COP). As the increased cooling effectiveness will lead to reduced air volume flow rate, smaller system size and lower cost, whilst the size and cost are the inherent barriers for use of dew point cooling as the alternation of the conventional cooling systems, the counter-flow system is considered to offer practical advantages over the cross-flow system that would aid the uptake of this low energy cooling alternative. In line with increased global demand for energy in cooling of building, largely by economic booming of emerging developing nations and recognised global warming, the research results will be of significant importance in terms of promoting deployment of the low energy dew point cooling system, helping reduction of energy use in cooling of buildings and cut of the associated carbon emission.