18 resultados para dyes
The AcrAB-TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis
Resumo:
The ability of an isogenic set of mutants of Salmonella enterica serovar Typhimurium L354 (SL1344) with defined deletions in genes encoding components of tripartite efflux pumps, including acrB, acrD, acrF and tolC, to colonize chickens was determined in competition with L354. In addition, the ability of L354 and each mutant to adhere to, and invade, human embryonic intestine cells and mouse monocyte macrophages was determined in vitro. The tolC and acrB knockout mutants were hyper-susceptible to a range of antibiotics, dyes and detergents; the tolC mutant was also more susceptible to acid pH and bile and grew more slowly than L354. Complementation of either gene ablated the phenotype. The tolC mutant poorly adhered to both cell types in vitro and was unable to invade macrophages. The acrB mutant adhered, but did not invade macrophages. In vivo, both the acrB mutant and the tolC mutant colonized poorly and did not persist in the avian gut, whereas the acrD and acrF mutant colonized and persisted as well as L354. These data indicate that the AcrAB-TolC system is important for the colonization of chickens by S. Typhimurium and that this system has a role in mediating adherence and uptake into target host cells.
Resumo:
The group of haemosporidian parasites is of general interest to basic and applied science, since several species infect mammals, leading to malaria and associated disease symptoms. Although the great majority of haemosporidian parasites appear in bird hosts, as in the case of Leucocytozoon buteonis, there is little genomic information about genetic aspects of their co-evolution with hosts. Consequently, there is a high need for parasite-enrichment strategies enabling further analyses of the genomes, namely without exposure to DNA-intercalating dyes. Here, we used flow cytometry without an additional labelling step to enrich L. buteonis from infected buzzard blood. A specific, defined area of two-dimensional scattergramms was sorted and the fraction was further analysed. The successful enrichment of L. buteonis in the sorted fraction was demonstrated by Giemsa-staining and qPCR revealing a clear increase of parasite-specific genes, while host-specific genes were significantly decreased. This is the first report describing a labelling-free enrichment approach of L. buteonis from infected buzzard blood. The enrichment of parasites presented here is free of nucleic acid-intercalating dyes which may interfere with fluorescence-based methods or subsequent sequencing approaches.
Resumo:
Electronically complementary, low molecular weight polymers that self-assemble through tuneable π-π stacking interactions to form extended supramolecular polymer networks have been developed for inkjet printing applications and successfully deposited using three different printing techniques. Sequential overprinting of the complementary components results in supramolecular network formation through complexation of π-electron rich pyrenyl or perylenyl chain-ends in one component with π-electron deficient naphthalene diimide residues in a chain-folding polyimide. The complementary π-π stacked polymer blends generate strongly coloured materials as a result of charge-transfer absorptions in the visible spectrum, potentially negating the need for pigments or dyes in the ink formulation. Indeed, the final colour of the deposited material can be tailored by changing varying the end-groups of the π electron rich polymer component. Piezoelectric printing techniques were employed in a proof of concept study to allow characterisation of the materials deposited, and a thermal inkjet printer adapted with imaging software enabled a detailed analysis of the ink-drops as they formed, and of their physical properties. Finally, continuous inkjet printing allowed greater volumes of material to be deposited, on a variety of different substrate surfaces, and demonstrated the utility and versatility of this novel type of ink for industrial applications.