72 resultados para drugs and the somatic nervous system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrations of a fully-coupled climate model with and without flux adjustments in the equatorial oceans are performed under 2×CO2 conditions to explore in more detail the impact of increased greenhouse gas forcing on the monsoon-ENSO system. When flux adjustments are used to correct some systematic model biases, ENSO behaviour in the modelled future climate features distinct irregular and periodic (biennial) regimes. Comparison with the observed record yields some consistency with ENSO modes primarily based on air-sea interaction and those dependent on basinwide ocean wave dynamics. Simple theory is also used to draw analogies between the regimes and irregular (stochastically forced) and self-excited oscillations respectively. Periodic behaviour is also found in the Asian-Australian monsoon system, part of an overall biennial tendency of the model under these conditions related to strong monsoon forcing and increased coupling between the Indian and Pacific Oceans. The tropospheric biennial oscillation (TBO) thus serves as a useful descriptor for the coupled monsoon-ENSO system in this case. The presence of obvious regime changes in the monsoon-ENSO system on interdecadal timescales, when using flux adjustments, suggests there may be greater uncertainty in projections of future climate, although further modelling studies are required to confirm the realism and cause of such changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of doubled CO2 concentration on the Asian summer monsoon is studied using a coupled ocean-atmosphere model. Both the mean seasonal precipitation and interannual monsoon variability are found to increase in the future climate scenario presented. Systematic biases in current climate simulations of the coupled system prevent accurate representation of the monsoon-ENSO teleconnection, of prime importance for seasonal prediction and for determining monsoon interannual variability. By applying seasonally varying heat flux adjustments to the tropical Pacific and Indian Ocean surface in the future climate simulation, some assessment can be made of the impact of systematic model biases on future climate predictions. In simulations where the flux adjustments are implemented, the response to climate change is magnified, with the suggestion that systematic biases may be masking the true impact of increased greenhouse gas forcing. The teleconnection between ENSO and the Asian summer monsoon remains robust in the future climate, although the Indo-Pacific takes on more of a biennial character for long periods of the flux-adjusted simulation. Assessing the teleconnection across interdecadal timescales shows wide variations in its amplitude, despite the absence of external forcing. This suggests that recent changes in the observed record cannot be distinguished from internal variations and as such are not necessarily related to climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the tropical African and neighboring Atlantic region there is a strong contrast in the properties of deep convection between land and ocean. Here, satellite radar observations are used to produce a composite picture of the life cycle of convection in these two regions. Estimates of the broadband thermal flux from the geostationary Meteosat-8 satellite are used to identify and track organized convective systems over their life cycle. The evolution of the system size and vertical extent are used to define five life cycle stages (warm and cold developing, mature, cold and warm dissipating), providing the basis for the composite analysis of the system evolution. The tracked systems are matched to overpasses of the Tropical Rainfall Measuring Mission satellite, and a composite picture of the evolution of various radar and lightning characteristics is built up. The results suggest a fundamental difference in the convective life cycle between land and ocean. African storms evolve from convectively active systems with frequent lightning in their developing stages to more stratiform conditions as they dissipate. Over the Atlantic, the convective fraction remains essentially constant into the dissipating stages, and lightning occurrence peaks late in the life cycle. This behavior is consistent with differences in convective sustainability in land and ocean regions as proposed in previous studies. The area expansion rate during the developing stages of convection is used to provide an estimate of the intensity of convection. Reasonable correlations are found between this index and the convective system lifetime, size, and depth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the development and first results of the “Community Integrated Assessment System” (CIAS), a unique multi-institutional modular and flexible integrated assessment system for modelling climate change. Key to this development is the supporting software infrastructure, SoftIAM. Through it, CIAS is distributed between the community of institutions which has each contributed modules to the CIAS system. At the heart of SoftIAM is the Bespoke Framework Generator (BFG) which enables flexibility in the assembly and composition of individual modules from a pool to form coupled models within CIAS, and flexibility in their deployment onto the available software and hardware resources. Such flexibility greatly enhances modellers’ ability to re-configure the CIAS coupled models to answer different questions, thus tracking evolving policy needs. It also allows rigorous testing of the robustness of IA modelling results to the use of different component modules representing the same processes (for example, the economy). Such processes are often modelled in very different ways, using different paradigms, at the participating institutions. An illustrative application to the study of the relationship between the economy and the earth’s climate system is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimates of soil organic carbon (SOC) stocks and changes under different land use systems can help determine vulnerability to land degradation. Such information is important for countries in and areas with high susceptibility to desertification. SOC stocks, and predicted changes between 2000 and 2030, were determined at the national scale for Jordan using The Global Environment Facility Soil Organic Carbon (GEFSOC) Modelling System. For the purpose of this study, Jordan was divided into three natural regions (The Jordan Valley, the Uplands and the Badia) and three developmental regions (North, Middle and South). Based on this division, Jordan was divided into five zones (based on the dominant land use): the Jordan Valley, the North Uplands, the Middle Uplands, the South Uplands and the Badia. This information was merged using GIS, along with a map of rainfall isohyets, to produce a map with 498 polygons. Each of these was given a unique ID, a land management unit identifier and was characterized in terms of its dominant soil type. Historical land use data, current land use and future land use change scenarios were also assembled, forming major inputs of the modelling system. The GEFSOC Modelling System was then run to produce C stocks in Jordan for the years 1990, 2000 and 2030. The results were compared with conventional methods of estimating carbon stocks, such as the mapping based SOTER method. The results of these comparisons showed that the model runs are acceptable, taking into consideration the limited availability of long-term experimental soil data that can be used to validate them. The main findings of this research show that between 2000 and 2030, SOC may increase in heavily used areas under irrigation and will likely decrease in grazed rangelands that cover most of Jordan giving an overall decrease in total SOC over time if the land is indeed used under the estimated forms of land use. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil organic carbon (SOC) plays a vital role in ecosystem function, determining soil fertility, water holding capacity and susceptibility to land degradation. In addition, SOC is related to atmospheric CO, levels with soils having the potential for C release or sequestration, depending on land use, land management and climate. The United Nations Convention on Climate Change and its Kyoto Protocol, and other United Nations Conventions to Combat Desertification and on Biodiversity all recognize the importance of SOC and point to the need for quantification of SOC stocks and changes. An understanding of SOC stocks and changes at the national and regional scale is necessary to further our understanding of the global C cycle, to assess the responses of terrestrial ecosystems to climate change and to aid policy makers in making land use/management decisions. Several studies have considered SOC stocks at the plot scale, but these are site specific and of limited value in making inferences about larger areas. Some studies have used empirical methods to estimate SOC stocks and changes at the regional scale, but such studies are limited in their ability to project future changes, and most have been carried out using temperate data sets. The computational method outlined by the Intergovernmental Panel on Climate Change (IPCC) has been used to estimate SOC stock changes at the regional scale in several studies, including a recent study considering five contrasting eco regions. This 'one step' approach fails to account for the dynamic manner in which SOC changes are likely to occur following changes in land use and land management. A dynamic modelling approach allows estimates to be made in a manner that accounts for the underlying processes leading to SOC change. Ecosystem models, designed for site scale applications can be linked to spatial databases, giving spatially explicit results that allow geographic areas of change in SOC stocks to be identified. Some studies have used variations on this approach to estimate SOC stock changes at the sub-national and national scale for areas of the USA and Europe and at the watershed scale for areas of Mexico and Cuba. However, a need remained for a national and regional scale, spatially explicit system that is generically applicable and can be applied to as wide a range of soil types, climates and land uses as possible. The Global Environment Facility Soil Organic Carbon (GEFSOC) Modelling System was developed in response to this need. The GEFSOC system allows estimates of SOC stocks and changes to be made for diverse conditions, providing essential information for countries wishing to take part in an emerging C market, and bringing us closer to an understanding of the future role of soils in the global C cycle. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The EP2025 EDS project develops a highly parallel information server that supports established high-value interfaces. We describe the motivation for the project, the architecture of the system, and the design and application of its database and language subsystems. The Elipsys logic programming language, its advanced applications, EDS Lisp, and the Metal machine translation system are examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A methodology is presented for the development of a combined seasonal weather and crop productivity forecasting system. The first stage of the methodology is the determination of the spatial scale(s) on which the system could operate; this determination has been made for the case of groundnut production in India. Rainfall is a dominant climatic determinant of groundnut yield in India. The relationship between yield and rainfall has been explored using data from 1966 to 1995. On the all-India scale, seasonal rainfall explains 52% of the variance in yield. On the subdivisional scale, correlations vary between variance r(2) = 0.62 (significance level p < 10(-4)) and a negative correlation with r(2) = 0.1 (p = 0.13). The spatial structure of the relationship between rainfall and groundnut yield has been explored using empirical orthogonal function (EOF) analysis. A coherent, large-scale pattern emerges for both rainfall and yield. On the subdivisional scale (similar to 300 km), the first principal component (PC) of rainfall is correlated well with the first PC of yield (r(2) = 0.53, p < 10(-4)), demonstrating that the large-scale patterns picked out by the EOFs are related. The physical significance of this result is demonstrated. Use of larger averaging areas for the EOF analysis resulted in lower and (over time) less robust correlations. Because of this loss of detail when using larger spatial scales, the subdivisional scale is suggested as an upper limit on the spatial scale for the proposed forecasting system. Further, district-level EOFs of the yield data demonstrate the validity of upscaling these data to the subdivisional scale. Similar patterns have been produced using data on both of these scales, and the first PCs are very highly correlated (r(2) = 0.96). Hence, a working spatial scale has been identified, typical of that used in seasonal weather forecasting, that can form the basis of crop modeling work for the case of groundnut production in India. Last, the change in correlation between yield and seasonal rainfall during the study period has been examined using seasonal totals and monthly EOFs. A further link between yield and subseasonal variability is demonstrated via analysis of dynamical data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional seemingly unrelated estimation of the almost ideal demand system is shown to lead to small sample bias and distortions in the size of a Wald test for symmetry and homogeneity when the data are co-integrated. A fully modified estimator is developed in an attempt to remedy these problems. It is shown that this estimator reduces the small sample bias but fails to eliminate the size distortion.. Bootstrapping is shown to be ineffective as a method of removing small sample bias in both the conventional and fully modified estimators. Bootstrapping is effective, however, as a method of removing. size distortion and performs equally well in this respect with both estimators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The shamba system involves farmers tending tree saplings on state-owned forest land in return for being permitted to intercrop perennial food crops until canopy closure. At one time the system was used throughout all state-owned forest lands in Kenya, accounting for a large proportion of some 160,000 ha. The system should theoretically be mutually beneficial to both local people and the government. However the system has had a chequered past in Kenya due to widespread malpractice and associated environmental degradation. It was last banned in 2003 but in early 2008 field trials were initiated for its reintroduction. This study aimed to: assess the benefits and limitations of the shamba system in Kenya; assess the main influences on the extent to which the limitations and benefits are realised and; consider the management and policy requirements for the system's successful and sustainable operation. Information was obtained from 133 questionnaires using mainly open ended questions and six participatory workshops carried out in forest-adjacent communities on the western slopes of Mount Kenya in Nyeri district. In addition interviews were conducted with key informants from communities and organisations. There was strong desire amongst local people for the system's reintroduction given that it had provided significant food, income and employment. Local perceptions of the failings of the system included firstly mismanagement by government or forest authorities and secondly abuse of the system by shamba farmers and outsiders. Improvements local people considered necessary for the shamba system to work included more accountability and transparency in administration and better rules with respect to plot allocation and stewardship. Ninety-seven percent of respondents said they would like to be more involved in management of the forest and 80% that they were willing to pay for the use of a plot. The study concludes that the structural framework laid down by the 2005 Forests Act, which includes provision for the reimplementation of the shamba system under the new plantation establishment and livelihood improvement scheme (PELIS) [It should be noted that whilst the shamba system was re-branded in 2008 under the acronym PELIS, for the sake of simplicity the authors continue to refer to the 'shamba system' and 'shamba farmers' throughout this paper.], is weakened because insufficient power is likely to be devolved to local people, casting them merely as 'forest users' and the shamba system as a 'forest user right'. In so doing the system's potential to both facilitate and embody the participation of local people in forest management is limited and the long-term sustainability of the new system is questionable. Suggested instruments to address this include some degree of sharing of profits from forest timber, performance related guarantees for farmers to gain a new plot and use of joint committees consisting of local people and the forest authorities for long term management of forests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wnt family of secreted signalling molecules controls a wide range of developmental processes in all metazoans. In this investigation we concentrate on the role that members of this family play during the development of (1) the somites and (2) the neural crest. (3) We also isolate a novel component of the Wnt signalling pathway called Naked cuticle and investigate the role that this protein may play in both of the previously mentioned developmental processes. (1) In higher vertebrates the paraxial mesoderm undergoes a mesenchymal-to-epithelial transformation to form segmentally organised structures called somites. Experiments have shown that signals originating from the ectoderm overlying the somites or from midline structures are required for the formation of the somites, but their identity has yet to be determined. Wnt6 is a good candidate as a somite epithelialisation factor from the ectoderm since it is expressed in this tissue. In this study we show that injection of Wnt6-producing cells beneath the ectoderm at the level of the segmental plate or lateral to the segmental plate leads to the formation of numerous small epithelial somites. We show that Wnts are indeed responsible for the epithelialisation of somites by applying Wnt antagonists which result in the segmental plate being unable to form somites. These results show that Wnt6, the only member of this family to be localised to the chick paraxial ectoderm, is able to regulate the development of epithelial somites and that cellular organisation is pivotal in the execution of the differentiation programmes. (2) The neural crest is a population of multipotent progenitor cells that arise from the neural ectoderm in all vertebrate embryos and form a multitude of derivatives including the peripheral sensory neurons, the enteric nervous system, Schwann cells, pigment cells and parts of the craniofacial skeleton. The induction of the neural crest relies on an ectodermally derived signal, but the identity of the molecule performing this role in amniotes is not known. Here we show that Wnt6, a protein expressed in the ectoderm, induces neural crest production. (3) The intracellular response to Wnt signalling depends on the choice of signalling cascade activated in the responding cell. Cells can activate either the canonical pathway that modulates gene expression to control cellular differentiation and proliferation, or the non-canonical pathway that controls cell polarity and movement (Pandur et al. 2002b). Recent work has identified the protein Naked cuticle as an intracellular switch promoting the non-canonical pathway at the expense of the canonical pathway. We have cloned chick Naked cuticle-1 (cNkd1) and demonstrate that it is expressed in a dynamic manner during early embryogenesis. We show that it is expressed in the somites and in particular regions where cells are undergoing movement. Lastly our study shows that the expression of cNkd1 is regulated by Wnt expression originating from the neural tube. This study provides evidence that non-canonical Wnt signalling plays a part in somite development.