37 resultados para document image analysis
Resumo:
Intact, enveloped coronavirus particles vary widely in size and contour, and are thus refractory to study by traditional structural means such as X-ray crystallography. Electron microscopy (EM) overcomes some problems associated with particle variability and has been an important tool for investigating coronavirus ultrastructure. However, EM sample preparation requires that the specimen be dried onto a carbon support film before imaging, collapsing internal particle structure in the case of coronaviruses. Moreover, conventional EM achieves image contrast by immersing the specimen briefly in heavy-metal-containing stain, which reveals some features while obscuring others. Electron cryomicroscopy (cryo-EM) instead employs a porous support film, to which the specimen is adsorbed and flash-frozen. Specimens preserved in vitreous ice over holes in the support film can then be imaged without additional staining. Cryo-EM, coupled with single-particle image analysis techniques, makes it possible to examine the size, structure and arrangement of coronavirus structural components in fully hydrated, native virions. Two virus purification procedures are described.
Resumo:
Robotic and manual methods have been used to obtain identification of significantly changing proteins regulated when Schizosaccharomyces pombe is exposed to oxidative stress. Differently treated S. pombe cells were lysed, labelled with CyDye and analysed by two-dimensional difference gel electrophoresis. Gel images analysed off-line, using the DeCyder image analysis software [GE Healthcare, Amersham, UK] allowed selection of significantly regulated proteins. Proteins displaying differential expression were excised robotically for manual digestion and identified by matrix-assisted laser desorption/ionisation - mass spectrometry (MALDI-MS). Additionally the same set of proteins displaying differential expression were automatically cut and digested using a prototype robotic platform. Automated MALDI-MS, peak label assignment and database searching were utilised to identify as many proteins as possible. The results achieved by the robotic system were compared to manual methods. The identification of all significantly altered proteins provides an annotated peroxide stress-related proteome that can be used as a base resource against which other stress-induced proteomic changes can be compared.
Resumo:
Digital videophotography, computer image analysis and physical measurements have been used to monitor sedimentation rates, coral cover, genera richness, rugosity and estimated recruitment dates of massive corals at three different sites in the Wakatobi Marine National Park, Indonesia, and on the reefs around Discovery Bay, Jamaica. Semi-structured interviews with key stakeholders in the Wakatobi Marine National Park indicated that coral mining was extensively practised, and is responsible for the absence of large non-branching corals on the Sampela reef Blast fishing is also practised in the Wakatobi Marine Park, and the authors, together with students, showed that blast fishing resulted in coral bleaching and not mortality of two Porites lutea colonies. In addition, we showed that monitoring of bleaching in Porites colonies induced by blast fishing could be a useful way of monitoring blast fishing practices in susceptible areas in the Indo-Pacific. The techniques used in this study are appropriate for use by volunteers with sufficient training, and provide excellent projects for dissertation students reading undergraduate degrees.
Resumo:
Robotic and manual methods have been used to obtain identification of significantly changing proteins regulated when Schizosaccharomyces pombe is exposed to oxidative stress. Differently treated S. pombe cells were lysed, labelled with CyDye (TM) and analysed by two-dimensional difference gel. electrophoresis. Gel images analysed off-line, using the DeCyder (TM) image analysis software [GE Healthcare, Amersham, UK] allowed selection of significantly regulated proteins. Proteins displaying differential expression were excised robotically for manual digestion and identified by matrix-assisted laser desorption/ionisation - mass spectrometry (MALDI-MS). Additionally the same set of proteins displaying differential expression were automatically cut and digested using a prototype robotic platform. Automated MALDI-MS, peak label assignment and database searching were utilised to identify as many proteins as possible. The results achieved by the robotic system were compared to manual methods. The identification of all significantly altered proteins provides an annotated peroxide stress-related proteome that can be used as a base resource against which other stress-induced proteomic changes can be compared.
Resumo:
Crumpets are made by heating fermented batter on a hot plate at around 230°C. The characteristic structure dominated by vertical pores develops rapidly: structure has developed throughout around 75% of the product height within 30s, which is far faster than might be expected from transient heat conduction through the batter. Cooking is complete within around 3 min. Image analysis based on results from X-ray tomography shows that the voidage fraction is approximately constant and that there is continual coalescence between the larger pores throughout the product although there is also a steady level of small bubbles trapped within the solidified batter. We report here experimental studies which shed light on some of the mechanisms responsible for this structure, together with some models of key phenomena.Three aspects are discussed here: the role of gas (carbon dioxide and nitrogen) nuclei in initiating structure development; convective heat transfer inside the developing pores; and the kinetics of setting the batter into an elastic solid structure. It is shown conclusively that the small bubbles of carbon dioxide resulting from the fermentation stage play a crucial role as nuclei for pore development: without these nuclei, the result is not a porous structure, but rather a solid, elastic, inedible, gelatinized product. These nuclei are also responsible for the tiny bubbles which are set in the final product. The nuclei form the source of the dominant pore structure which is largely driven by the, initially explosive, release of water vapour from the batter together with the desorption of dissolved carbon dioxide. It is argued that the rapid evaporation, transport and condensation of steam within the growing pores provides an important mechanism, as in a heat pipe, for rapid heat transfer, and models for this process are developed and tested. The setting of the continuous batter phase is essential for final product quality: studies using differential scanning calorimetry and on the kinetics of change in the visco-elastic properties of the batter suggest that this process is driven by the kinetics of gelatinization. Unlike many thermally driven food processes the rates of heating are such that gelatinization kinetics cannot be neglected. The implications of these results for modelling and for the development of novel structures are discussed.
Resumo:
A combined mathematical model for predicting heat penetration and microbial inactivation in a solid body heated by conduction was tested experimentally by inoculating agar cylinders with Salmonella typhimurium or Enterococcus faecium and heating in a water bath. Regions of growth where bacteria had survived after heating were measured by image analysis and compared with model predictions. Visualisation of the regions of growth was improved by incorporating chromogenic metabolic indicators into the agar. Preliminary tests established that the model performed satisfactorily with both test organisms and with cylinders of different diameter. The model was then used in simulation studies in which the parameters D, z, inoculum size, cylinder diameter and heating temperature were systematically varied. These simulations showed that the biological variables D, z and inoculum size had a relatively small effect on the time needed to eliminate bacteria at the cylinder axis in comparison with the physical variables heating temperature and cylinder diameter, which had a much greater relative effect. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Bubbles impart a very unique texture, chew, and mouth feel to foods. However, little is known about the relationship between structure of such products and consumer response in terms of mouth-feel and eating experience. The objective of this article is to investigate the sensory properties of 4 types of bubble-containing chocolates, produced by using different gases: carbon dioxide, nitrogen, nitrous oxide, and argon. The structure of these chocolates were characterized in terms of (1) gas hold-up values determined by density measurements and (2) bubble size distribution which was measured by undertaking an image analysis of X-ray microtomograph sections. Bubble size distributions were obtained by measuring bubble volumes after reconstructing 3D images from the tomographic sections. A sensory study was undertaken by a nonexpert panel of 20 panelists and their responses were analyzed using qualitative descriptive analysis (QDA). The results show that chocolates made from the 4 gases could be divided into 2 groups on the basis of bubble volume and gas hold-up: the samples produced using carbon dioxide and nitrous oxide had a distinctly higher gas hold-up containing larger bubbles in comparison with those produced using argon and nitrogen. The sensory study also demonstrated that chocolates made with the latter were perceived to be harder, less aerated, slow to melt in the mouth, and having overall flavor intensity. These products were further found to be creamier than the chocolates made by using carbon dioxide and nitrous oxide; the latter sample also showed a higher intensity of cocoa flavor.
Resumo:
Dietary antioxidants can affect cellular processes relevant to chronic inflammatory diseases such as atherosclerosis. We have used non- standard techniques to quantify effects of the antioxidant soy isoflavones genistein and daidzein on translocation of Nuclear Factor-KB (NF-KB) and nitric oxide (NO) production, which are important in these diseases. Translocation was quantified using confocal immunofluoresecence microscopy and ratiometric image analysis. NO was quantified by an electrochemical method after reduction of its oxidation products in cell culture supernatants. Activation of the RAW 264.7 murine monocyte/macrophage cell line increased the ratio of nuclear to cytoplasmic immunostaining for NF-kB. The increase was exacerbated by pre-treatment with genistein or daidzein. To show that decreases could also be detected, pre-treatment with the pine bark extract Pycnogenol (R) r was examined, and found to reduce translocation. NO production was also increased by activation, but was reduced by pre-treatment with genistein or daidzein. In the EA. hy926 human endothelial cell line, constitutive production was detectable and was increased by thrombin. The confocal and electrochemical methods gave data that agreed with results obtained using the established electromobility shift and Griess assays, but were more sensitive, more convenient, gave more detailed information and avoided the use of radioisotopes.
Resumo:
This paper describes the crowd image analysis challenge that forms part of the PETS 2009 workshop. The aim of this challenge is to use new or existing systems for i) crowd count and density estimation, ii) tracking of individual(s) within a crowd, and iii) detection of separate flows and specific crowd events, in a real-world environment. The dataset scenarios were filmed from multiple cameras and involve multiple actors.
Resumo:
This paper describes the crowd image analysis challenge that forms part of the PETS 2009 workshop. The aim of this challenge is to use new or existing systems for i) crowd count and density estimation, ii) tracking of individual(s) within a crowd, and iii) detection of separate flows and specific crowd events, in a real-world environment. The dataset scenarios were filmed from multiple cameras and involve multiple actors.
Resumo:
This paper presents the results of the crowd image analysis challenge, as part of the PETS 2009 workshop. The evaluation is carried out using a selection of the metrics available in the Video Analysis and Content Extraction (VACE) program and the CLassification of Events, Activities, and Relationships (CLEAR) consortium. The evaluation highlights the strengths of the authors’ systems in areas such as precision, accuracy and robustness.
Resumo:
This paper presents the results of the crowd image analysis challenge of the Winter PETS 2009 workshop. The evaluation is carried out using a selection of the metrics developed in the Video Analysis and Content Extraction (VACE) program and the CLassification of Events, Activities, and Relationships (CLEAR) consortium [13]. The evaluation highlights the detection and tracking performance of the authors’systems in areas such as precision, accuracy and robustness. The performance is also compared to the PETS 2009 submitted results.
Resumo:
This paper presents the results of the crowd image analysis challenge of the PETS2010 workshop. The evaluation was carried out using a selection of the metrics developed in the Video Analysis and Content Extraction (VACE) program and the CLassification of Events, Activities, and Relationships (CLEAR) consortium. The PETS 2010 evaluation was performed using new ground truthing create from each independant two dimensional view. In addition, the performance of the submissions to the PETS 2009 and Winter-PETS 2009 were evaluated and included in the results. The evaluation highlights the detection and tracking performance of the authors’ systems in areas such as precision, accuracy and robustness.
Resumo:
Gene Chips are finding extensive use in animal and plant science. Generally microarrays are of two kind, cDNA or oligonucleotide. cDNA microarrays were developed at Stanford University, whereas oligonucleotide were developed by Affymetrix. The construction of cDNA or oligonucleotide on a glass slide helps to compare the gene expression level of treated and control samples by labeling mRNA with green (Cy3) and red (Cy5) dyes. The hybridized gene chip emit fluorescence whose intensity and colour can be measured. RNA labeling can be done directly or indirectly. Indirect method involves amino allyle modified dUTP instead of pre-labelled nucleotide. Hybridization of gene chip generally occurs in a minimum volume possible and to ensure the hetroduplex formation, a ten fold more DNA is spotted on slide than in the solutions. A confocal or semi confocal laser technologies coupled with CCD camera are used for image acquisition. For standardization, house keeping genes are used or cDNA are spotted in gene chip that are not present in treated or control samples. Moreover, statistical analysis (image analysis) and cluster analysis softwares have been developed by Stanford University. The gene-chip technology has many applications like expression analysis, gene expression signatures (molecular phenotypes) and promoter regulatory element co-expression.