28 resultados para dipolar dephasing


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We performed atomistic molecular dynamics simulations of anionic and cationic micelles in the presence of poly(ethylene oxide) (PEO) to understand why nonionic water-soluble polymers such as PEO interact strongly with anionic micelles but only weakly with cationic micelles. Our micelles include sodium n-dodecyl sulfate (SDS), n-dodecyl trimethylammonium chloride (DTAC), n-dodecyl ammonium chloride (DAC), and micelles in which we artificially reverse the sign of partial charges in SDS and DTAC. We observe that the polymer interacts hydrophobically with anionic SDS but only weakly with cationic DTAC and DAC, in agreement with experiment. However, the polymer also interacts with the artificial anionic DTAC but fails to interact hydrophobically with the artificial cationic SDS, illustrating that large headgroup size does not explain the weak polymer interaction with cationic micelles. In addition, we observe through simulation that this preference for interaction with anionic micelles still exists in a dipolar "dumbbell" solvent, indicating that water structure and hydrogen bonding alone cannot explain this preferential interaction. Our simulations suggest that direct electrostatic interactions between the micelle and polymer explain the preference for interaction with anionic micelles, even though the polymer overall carries no net charge. This is possible given the asymmetric distribution of negative charges on smaller atoms and positive charges oil larger units in the polymer chain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The LiHoxY1−xF4 Ising magnetic material subject to a magnetic field perpendicular to the Ho3+ Ising direction has shown over the past 20 years to be a host of very interesting thermodynamic and magnetic phenomena. Unfortunately, the availability of other magnetic materials other than LiHoxY1−xF4 that may be described by a transverse-field Ising model remains very much limited. It is in this context that we use here a mean-field theory to investigate the suitability of the Ho(OH)3, Dy(OH)3, and Tb(OH)3 insulating hexagonal dipolar Ising-type ferromagnets for the study of the quantum phase transition induced by a magnetic field, Bx, applied perpendicular to the Ising spin direction. Experimentally, the zero-field critical (Curie) temperatures are known to be Tc≈2.54, 3.48, and 3.72 K, for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. From our calculations we estimate the critical transverse field, Bxc, to destroy ferromagnetic order at zero temperature to be Bxc=4.35, 5.03, and 54.81 T for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. We find that Ho(OH)3, similarly to LiHoF4, can be quantitatively described by an effective S=1/2 transverse-field Ising model. This is not the case for Dy(OH)3 due to the strong admixing between the ground doublet and first excited doublet induced by the dipolar interactions. Furthermore, we find that the paramagnetic (PM) to ferromagnetic (FM) transition in Dy(OH)3 becomes first order for strong Bx and low temperatures. Hence, the PM to FM zero-temperature transition in Dy(OH)3 may be first order and not quantum critical. We investigate the effect of competing antiferromagnetic nearest-neighbor exchange and applied magnetic field, Bz, along the Ising spin direction ẑ on the first-order transition in Dy(OH)3. We conclude from these preliminary calculations that Ho(OH)3 and Dy(OH)3 and their Y3+ diamagnetically diluted variants, HoxY1−x(OH)3 and DyxY1−x(OH)3, are potentially interesting systems to study transverse-field-induced quantum fluctuations effects in hard axis (Ising-type) magnetic materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The LiHoxY1-xF4 magnetic material in a transverse magnetic field Bxx̂ perpendicular to the Ising spin direction has long been used to study tunable quantum phase transitions in a random disordered system. We show that the Bx-induced magnetization along the x̂ direction, combined with the local random dilution-induced destruction of crystalline symmetries, generates, via the predominant dipolar interactions between Ho3+ ions, random fields along the Ising ẑ direction. This identifies LiHoxY1-xF4 in Bx as a new random field Ising system. The random fields explain the rapid decrease of the critical temperature in the diluted ferromagnetic regime and the smearing of the nonlinear susceptibility at the spin-glass transition with increasing Bx and render the Bx-induced quantum criticality in LiHoxY1-xF4 likely inaccessible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research on the cortical sources of nociceptive laser-evoked brain potentials (LEPs) began almost two decades ago (Tarkka and Treede, 1993). Whereas there is a large consensus on the sources of the late part of the LEP waveform (N2 and P2 waves), the relative contribution of the primary somatosensory cortex (S1) to the early part of the LEP waveform (N1 wave) is still debated. To address this issue we recorded LEPs elicited by the stimulation of four limbs in a large population (n=35). Early LEP generators were estimated both at single-subject and group level, using three different approaches: distributed source analysis, dipolar source modeling, and probabilistic independent component analysis (ICA). We show that the scalp distribution of the earliest LEP response to hand stimulation was maximal over the central-parietal electrodes contralateral to the stimulated side, while that of the earliest LEP response to foot stimulation was maximal over the central-parietal midline electrodes. Crucially, all three approaches indicated hand and foot S1 areas as generators of the earliest LEP response. Altogether, these findings indicate that the earliest part of the scalp response elicited by a selective nociceptive stimulus is largely explained by activity in the contralateral S1, with negligible contribution from the secondary somatosensory cortex (S2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The time-mean quasi-geostrophic potential vorticity equation of the atmospheric flow on isobaric surfaces can explicitly include an atmospheric (internal) forcing term of the stationary-eddy flow. In fact, neglecting some non-linear terms in this equation, this forcing can be mathematically expressed as a single function, called Empirical Forcing Function (EFF), which is equal to the material derivative of the time-mean potential vorticity. Furthermore, the EFF can be decomposed as a sum of seven components, each one representing a forcing mechanism of different nature. These mechanisms include diabatic components associated with the radiative forcing, latent heat release and frictional dissipation, and components related to transient eddy transports of heat and momentum. All these factors quantify the role of the transient eddies in forcing the atmospheric circulation. In order to assess the relevance of the EFF in diagnosing large-scale anomalies in the atmospheric circulation, the relationship between the EFF and the occurrence of strong North Atlantic ridges over the Eastern North Atlantic is analyzed, which are often precursors of severe droughts over Western Iberia. For such events, the EFF pattern depicts a clear dipolar structure over the North Atlantic; cyclonic (anticyclonic) forcing of potential vorticity is found upstream (downstream) of the anomalously strong ridges. Results also show that the most significant components are related to the diabatic processes. Lastly, these results highlight the relevance of the EFF in diagnosing large-scale anomalies, also providing some insight into their interaction with different physical mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the effect of a secondary star magnetic field on the accretion disc dynamics of dwarf novae. Simulations have been carried out with a particle code and a dipolar magnetic field structure. The magnetic field acts to remove angular momentum from the disc material, increasing the inward mass flow. This makes the accretion disc more centrally condensed, causing a reduction in the recurrence time for dwarf nova outbursts. We have produced Doppler tomograms and light curves which may be compared with observations. These tomograms are significantly different from those produced in the absence of a magnetic field on the secondary. We derive an upper limit to the magnetic moment of the secondary star in UGem of mu_2<2x10^32 A m^2. The magnetic truncation of the accretion disc produces resonance phenomena similar to those seen in the superoutbursts of SUUMa systems. While these have not been observed for systems like UGem, observations of the SUUMa systems provide us with a useful diagnostic of the disc-field interaction. We are able to place an upper limit on the magnetic moment of the secondary in ZCha of mu_2<1x10^30 A m^2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Descent and spreading of high salinity water generated by salt rejection during sea ice formation in an Antarctic coastal polynya is studied using a hydrostatic, primitive equation three-dimensional ocean model called the Proudman Oceanographic Laboratory Coastal Ocean Modeling System (POLCOMS). The shape of the polynya is assumed to be a rectangle 100 km long and 30 km wide, and the salinity flux into the polynya at its surface is constant. The model has been run at high horizontal spatial resolution (500 m), and numerical simulations reveal a buoyancy-driven coastal current. The coastal current is a robust feature and appears in a range of simulations designed to investigate the influence of a sloping bottom, variable bottom drag, variable vertical turbulent diffusivities, higher salinity flux, and an offshore position of the polynya. It is shown that bottom drag is the main factor determining the current width. This coastal current has not been produced with other numerical models of polynyas, which may be because these models were run at coarser resolutions. The coastal current becomes unstable upstream of its front when the polynya is adjacent to the coast. When the polynya is situated offshore, an unstable current is produced from its outset owing to the capture of cyclonic eddies. The effect of a coastal protrusion and a canyon on the current motion is investigated. In particular, due to the convex shape of the coastal protrusion, the current sheds a dipolar eddy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An efficient synthesis of spirocyclic triazolooxazine nucleosides is described. This was achieved by the conversion of β-D-psicofuranose to the corresponding azido-derivative, followed by alkylation of the primary alcohol with a range of propargyl bromides - obtained via Sonogashira chemistry. The products of these reactions underwent 1,3-dipolar addition smoothly to generate the protected spirocyclic adducts. These were easily deprotected to give the corresponding ribose nucleosides. The library of compounds obtained was investigated for its antiviral activity, using MHV (Mouse Hepatitis Virus) as a model wherein derivative 3f showed the most promising activity and tolerability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a Langevin molecular dynamics simulation, we show that the magnetic properties of a mono- and bi-dispersed ferrofluid system depend on the volume fraction and the dipolar coupling parameter. For the bi-dispersed system, most of the chains are formed by the large particles, but the aggregation behavior of the large particles is hindered by the presence of the small particles, which are predominantly attached to the end of the particle chain. To further elucidate the microscopic fluid structure, anisotropic structure factors are calculated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetization properties of aggregated ferrofluids are calculated by combining the chain formation model developed by Zubarev with the modified mean-field theory. Using moderate assumptions for the inter- and intrachain interactions we obtain expressions for the magnetization and initial susceptibility. When comparing the results of our theory to molecular dynamics simulations of the same model we find that at large dipolar couplings (lambda>3) the chain formation model appears to give better predictions than other analytical approaches. This supports the idea that chain formation is an important structural ingredient of strongly interacting dipolar particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate in detail the initial susceptibility, magnetization curves, and microstructure of ferrofluids in various concentration and particle dipole moment ranges by means of molecular dynamics simulations. We use the Ewald summation for the long-range dipolar interactions, take explicitly into account the translational and rotational degrees of freedom, coupled to a Langevin thermostat. When the dipolar interaction energy is comparable with the thermal energy, the simulation results on the magnetization properties agree with the theoretical predictions very well. For stronger dipolar couplings, however, we find systematic deviations from the theoretical curves. We analyze in detail the observed microstructure of the fluids under different conditions. The formation of clusters is found to enhance the magnetization at weak fields and thus leads to a larger initial susceptibility. The influence of the particle aggregation is isolated by studying ferro-solids, which consist of magnetic dipoles frozen in at random locations but which are free to rotate. Due to the artificial suppression of clusters in ferrosolids the observed susceptibility is considerably lowered when compared to ferrofluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetoviscous effect, change in viscosity with change in magnetic field strength, and the anisotropy of magnetoviscous effect, change in viscosity with orientation of magnetic field, have been a focus of interest since four decades. A satisfactory understanding of the microscopic origin of anisotropy of magnetoviscous effect in magnetic fluids is still a matter of debate and a field of intense research. Here, we present an extensive simulation study to understand the relation between the anisotropy of magnetoviscous effect and the underlying change in micro-structures of ferrofluids. Our results indicate that field-induced chain-like structures respond very differently depending on their orientation relative to the direction of an externally applied shear flow, which leads to a pronounced anisotropy of viscosity. In this work, we focus on three exemplary values of dipolar interaction strengths which correspond to weak, intermediate and strong interactions between dipolar colloidal particles. We compare our simulation results with an experimental study on cobalt-based ferrofluids as well as with an existing theoretical model called the chain model. A non-monotonic behaviour in the anisotropy of magnetoviscous effect is observed with increasing dipolar interaction strength and is explained in terms of micro-structure formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An extensive experimental and simulation study is carried out in conventional magnetorheological fluids formulated by dispersion of mixtures of carbonyl iron particles having different sizes in Newtonian carriers. Apparent yield stress data are reported for a wide range of polydispersity indexes (PDI) from PDI = 1.63 to PDI = 3.31, which for a log-normal distribution corresponds to the standard deviation ranging from to . These results demonstrate that the effect of polydispersity is negligible in this range in spite of exhibiting very different microstructures. Experimental data in the magnetic saturation regime are in quantitative good agreement with particle-level simulations under the assumption of dipolar magnetostatic forces. The insensitivity of the yield stresses to the polydispersity can be understood from the interplay between the particle cluster size distribution and the packing density of particles inside the clusters.