24 resultados para digital spiral analysis
Resumo:
Social Networking Sites have recently become a mainstream communications technology for many people around the world. Major IT vendors are releasing social software designed for use in a business/commercial context. These Enterprise 2.0 technologies have impressive collaboration and information sharing functionality, but so far they do not have any organizational network analysis (ONA) features that reveal any patterns of connectivity within business units. This paper shows the impact of organizational network analysis techniques and social networks on organizational performance, we also give an overview on current enterprise social software, and most importantly, we highlight how Enterprise 2.0 can help automate an organizational network analysis.
Resumo:
This book investigates the challenges that the presence of digital imaging within the cinematic frame can pose for the task of interpretation. Applying close textual analysis to a series of case studies, the book demystifies the relationship of digital imaging to processes of watching and reading films, and develops a methodology for approaching the digital in popular cinema. In doing so, the study places contemporary digital imaging practice in relation to historical traditions of filmmaking and special effects practice, and proposes a fresh, flexible approach the the close reading of film that can take appropriate account of the presence of the digital.
Resumo:
The isolation of spirochetes from severe ovine foot disease has been reported recently by our research group. In this study we describe the preliminary classification of this spirochete based on nucleotide sequence analysis of the PCR-amplified 16S rRNA gene. Phylogenetic analysis of this sequence in comparison with other previously reported 16S rRNA gene sequences showed that the spirochete belonged to the treponemal phylotype Treponema vincentii which has been associated with bovine digital dermatitis and human periodontal disease. Further work is required to define the common virulence determinants of these closely related treponemes in the aetiology of these tissue destructive diseases. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
This chapter presents techniques used for the generation of 3D digital elevation models (DEMs) from remotely sensed data. Three methods are explored and discussed—optical stereoscopic imagery, Interferometric Synthetic Aperture Radar (InSAR), and LIght Detection and Ranging (LIDAR). For each approach, the state-of-the-art presented in the literature is reviewed. Techniques involved in DEM generation are presented with accuracy evaluation. Results of DEMs reconstructed from remotely sensed data are illustrated. While the processes of DEM generation from satellite stereoscopic imagery represents a good example of passive, multi-view imaging technology, discussed in Chap. 2 of this book, InSAR and LIDAR use different principles to acquire 3D information. With regard to InSAR and LIDAR, detailed discussions are conducted in order to convey the fundamentals of both technologies.
Resumo:
The increasing use of social media, applications or platforms that allow users to interact online, ensures that this environment will provide a useful source of evidence for the forensics examiner. Current tools for the examination of digital evidence find this data problematic as they are not designed for the collection and analysis of online data. Therefore, this paper presents a framework for the forensic analysis of user interaction with social media. In particular, it presents an inter-disciplinary approach for the quantitative analysis of user engagement to identify relational and temporal dimensions of evidence relevant to an investigation. This framework enables the analysis of large data sets from which a (much smaller) group of individuals of interest can be identified. In this way, it may be used to support the identification of individuals who might be ‘instigators’ of a criminal event orchestrated via social media, or a means of potentially identifying those who might be involved in the ‘peaks’ of activity. In order to demonstrate the applicability of the framework, this paper applies it to a case study of actors posting to a social media Web site.
Resumo:
This paper explores the linguistic practice of digital code plays in an online discussion forum, used by the community of English-speaking Germans living in Britain. By adopting a qualitative approach of Computer-Mediated Discourse Analysis, the article examines the ways in which these bilinguals deploy linguistic and other semiotic resources on the forum to co-construct humorous code plays. These performances occur in the context of negotiating language norms and are based on conscious manipulations of both codes, English and German. They involve play with codes at three levels: play with forms, meanings, and frames. Although, at first sight, such alternations appear to be used mainly for a comic effect, there is more to this than just humour. By mixing both codes at all levels, the participants deliberately produce aberrant German ‘polluted’ with English and, in so doing, dismantle the ideology of language purity upheld by the purist movement. The deliberate character of this type of code alternation demonstrates heightened metalinguistic awareness as well as creativity and criticality. By exploring the practice of digital code plays, the current study contributes to the growing body of research on networked multilingualism as well as to practices associated with translanguaging, poly- and metrolingualism.
Resumo:
Social network has gained remarkable attention in the last decade. Accessing social network sites such as Twitter, Facebook LinkedIn and Google+ through the internet and the web 2.0 technologies has become more affordable. People are becoming more interested in and relying on social network for information, news and opinion of other users on diverse subject matters. The heavy reliance on social network sites causes them to generate massive data characterised by three computational issues namely; size, noise and dynamism. These issues often make social network data very complex to analyse manually, resulting in the pertinent use of computational means of analysing them. Data mining provides a wide range of techniques for detecting useful knowledge from massive datasets like trends, patterns and rules [44]. Data mining techniques are used for information retrieval, statistical modelling and machine learning. These techniques employ data pre-processing, data analysis, and data interpretation processes in the course of data analysis. This survey discusses different data mining techniques used in mining diverse aspects of the social network over decades going from the historical techniques to the up-to-date models, including our novel technique named TRCM. All the techniques covered in this survey are listed in the Table.1 including the tools employed as well as names of their authors.
Resumo:
The UK government is mandating the use of building information modelling (BIM) in large public projects by 2016. As a result, engineering firms are faced with challenges related to embedding new technologies and associated working practices for the digital delivery of major infrastructure projects. Diffusion of innovations theory is used to investigate how digital innovations diffuse across complex firms. A contextualist approach is employed through an in-depth case study of a large, international engineering project-based firm. The analysis of the empirical data, which was collected over a four-year period of close interaction with the firm, reveals parallel paths of diffusion occurring across the firm, where both the innovation and the firm context were continually changing. The diffusion process is traced over three phases: centralization of technology management, standardization of digital working practices, and globalization of digital resources. The findings describe the diffusion of a digital innovation as multiple and partial within a complex social system during times of change and organizational uncertainty, thereby contributing to diffusion of innovations studies in construction by showing a range of activities and dynamics of a non-linear diffusion process.
Resumo:
Background 29 autoimmune diseases, including Rheumatoid Arthritis, gout, Crohn’s Disease, and Systematic Lupus Erythematosus affect 7.6-9.4% of the population. While effective therapy is available, many patients do not follow treatment or use medications as directed. Digital health and Web 2.0 interventions have demonstrated much promise in increasing medication and treatment adherence, but to date many Internet tools have proven disappointing. In fact, most digital interventions continue to suffer from high attrition in patient populations, are burdensome for healthcare professionals, and have relatively short life spans. Objective Digital health tools have traditionally centered on the transformation of existing interventions (such as diaries, trackers, stage-based or cognitive behavioral therapy programs, coupons, or symptom checklists) to electronic format. Advanced digital interventions have also incorporated attributes of Web 2.0 such as social networking, text messaging, and the use of video. Despite these efforts, there has not been little measurable impact in non-adherence for illnesses that require medical interventions, and research must look to other strategies or development methodologies. As a first step in investigating the feasibility of developing such a tool, the objective of the current study is to systematically rate factors of non-adherence that have been reported in past research studies. Methods Grounded Theory, recognized as a rigorous method that facilitates the emergence of new themes through systematic analysis, data collection and coding, was used to analyze quantitative, qualitative and mixed method studies addressing the following autoimmune diseases: Rheumatoid Arthritis, gout, Crohn’s Disease, Systematic Lupus Erythematosus, and inflammatory bowel disease. Studies were only included if they contained primary data addressing the relationship with non-adherence. Results Out of the 27 studies, four non-modifiable and 11 modifiable risk factors were discovered. Over one third of articles identified the following risk factors as common contributors to medication non-adherence (percent of studies reporting): patients not understanding treatment (44%), side effects (41%), age (37%), dose regimen (33%), and perceived medication ineffectiveness (33%). An unanticipated finding that emerged was the need for risk stratification tools (81%) with patient-centric approaches (67%). Conclusions This study systematically identifies and categorizes medication non-adherence risk factors in select autoimmune diseases. Findings indicate that patients understanding of their disease and the role of medication are paramount. An unexpected finding was that the majority of research articles called for the creation of tailored, patient-centric interventions that dispel personal misconceptions about disease, pharmacotherapy, and how the body responds to treatment. To our knowledge, these interventions do not yet exist in digital format. Rather than adopting a systems level approach, digital health programs should focus on cohorts with heterogeneous needs, and develop tailored interventions based on individual non-adherence patterns.