62 resultados para dichroic mirror


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many human behaviours and pathologies have been attributed to the putative mirror neuron system, a neural system that is active during both the observation and execution of actions. While there are now a very large number of papers on the mirror neuron system, variations in the methods and analyses employed by researchers mean that the basic characteristics of the mirror response are not clear. This review focuses on three important aspects of the mirror response, as measured by modulations in corticospinal excitability: (1) muscle specificity, (2) direction, and (3) timing of modulation. We focus mainly on electromyographic (EMG) data gathered following single-pulse transcranial magnetic stimulation (TMS), because this method provides precise information regarding these three aspects of the response. Data from paired-pulse TMS paradigms and peripheral nerve stimulation (PNS) are also considered when we discuss the possible mechanisms underlying the mirror response. In this systematic review of the literature, we examine the findings of 85 TMS and PNS studies of the human mirror response, and consider the limitations and advantages of the different methodological approaches these have adopted in relation to discrepancies between their findings. We conclude by proposing a testable model of how action observation modulates corticospinal excitability in humans. Specifically, we propose that action observation elicits an early, non-specific facilitation of corticospinal excitability (at around 90 ms from action onset), followed by a later modulation of activity specific to the muscles involved in the observed action (from around 200 ms). Testing this model will greatly advance our understanding of the mirror mechanism and provide a more stable grounding on which to base inferences about its role in human behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Earth Cloud, Aerosol and Radiation Explorer mission (EarthCARE) Multispectral Imager (MSI) is a radiometric instrument designed to provide the imaging of the atmospheric cloud cover and the cloud top surface temperature from a sun-synchronous low Earth orbit. The MSI forms part of a suite of four instruments destined to support the European Space Agency Living Planet mission on-board the EarthCARE satellite payload to be launched in 2016, whose synergy will be used to construct three-dimensional scenes, textures and temperatures of atmospheric clouds and aerosols. The MSI instrument contains seven channels: four solar channels to measure visible and short-wave infrared wavelengths, and three channels to measure infrared thermal emission. In this paper, we describe the optical layout of the infrared instrument channels, thin-film multilayer designs, the coating deposition method and the spectral system throughput for the bandpass interference filters, dichroic beam splitters, lenses and mirror coatings to discriminate wavelengths at 8.8, 10.8, & 12.0 µm. The rationale for the selection of thin-film materials, spectral measurement technique, and environmental testing performance are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cortical motor simulation supports the understanding of others' actions and intentions. This mechanism is thought to rely on the mirror neuron system (MNS), a brain network that is active both during action execution and observation. Indirect evidence suggests that alpha/beta suppression, an electroencephalographic (EEG) index of MNS activity, is modulated by reward. In this study we aimed to test the plasticity of the MNS by directly investigating the link between alpha/beta suppression and reward. 40 individuals from a general population sample took part in an evaluative conditioning experiment, where different neutral faces were associated with high or low reward values. In the test phase, EEG was recorded while participants viewed videoclips of happy expressions made by the conditioned faces. Alpha/beta suppression (identified using event-related desynchronisation of specific independent components) in response to rewarding faces was found to be greater than for non-rewarding faces. This result provides a mechanistic insight into the plasticity of the MNS and, more generally, into the role of reward in modulating physiological responses linked to empathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discrepancies between recent global earth albedo anomaly data obtained from the climate models, space and ground observations call for a new and better earth reflectance measurement technique. The SALEX (Space Ashen Light Explorer) instrument is a space-based visible and IR instrument for precise estimation of the global earth albedo by measuring the ashen light reflected off the shadowy side of the Moon from the low earth orbit. The instrument consists of a conventional 2-mirror telescope, a pair of a 3-mirror visible imager and an IR bolometer. The performance of this unique multi-channel optical system is sensitive to the stray light contamination due to the complex optical train incorporating several reflecting and refracting elements, associated mounts and the payload mechanical enclosure. This could be further aggravated by the very bright and extended observation target (i.e. the Moon). In this paper, we report the details of extensive stray light analysis including ghosts and cross-talks, leading to the optimum set of stray light precautions for the highest signal-to-noise ratio attainable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Helical nanofibers are successfully constructed from suitable self-assembling pseudopeptide-based molecular building blocks. The handedness of these nanofibers can be reversed by using mirror-imaged pseudopeptide-based building blocks. Straight nanofibers are also constructed by modulating the molecular and supramolecular structures by the proper choice of the stereochemical nature of the molecular scaffolds. This study demonstrates that molecular structure and chirality are not the only determining factors for tuning the morphology and chirality of nanostructures; the nature of the supramolecular structures formed from the corresponding molecular scaffolds also plays a key role in dictating the shape and chirality of nanostructures. Helical nanofibers are suitable templates for fabricating dipeptide-capped gold nanoparticles, indicating a possible use of these nanofibers in the construction of arrays of gold nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intrinsically chiral metal and mineral surfaces show enantioselective behaviour without modifiers. Examples are artificial high-Miller-index surfaces of metal single crystals with cubic bulk lattice symmetry, which have no mirror planes and are therefore chiral, or surfaces of naturally occurring crystallites of some common minerals, such as alpha-quartz or calcite. Recent findings with regards to the surface geometry, reactivity and thermal stability of intrinsically chiral surfaces are discussed. A number of enantioselective effects have been reported in connection with the adsorption of small chiral molecules (e.g. alanine, cysteine) on intrinsically chiral surfaces under well-defined conditions. From a combination of experimental surface science techniques and theoretical ab initio model calculations it emerges that these effects are due to a combination of attractive and repulsive adsorbate-substrate and inter-adsorbate interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between repeated body checking and its impact on body size estimation and body dissatisfaction is of interest for two reasons. First, it has importance in theoretical accounts of the maintenance of eating disorders and, second, body checking is targeted in cognitive-behavioural treatment. The aim of this study was to determine the impact of manipulating body checking on body size estimation and body dissatisfaction. Sixty women were randomly assigned either to repeatedly scrutinize their bodies in a critical way in the mirror ("high body checking") or to refrain from body checking but to examine the whole of their bodies in a neutral way ("low body checking"). Body dissatisfaction, feelings of fatness and the strength of a particular self-critical thought increased immediately after the manipulation among those in the high body checking condition. Feelings of fatness decreased among those in the low body checking condition. These changes were short-lived. The manipulation did not effect estimations of body size or the discrepancy between estimations of body size and desired body size. The implications of these findings for understanding the influence of body checking on the maintenance of body dissatisfaction are considered. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Syntactic theory provides a rich array of representational assumptions about linguistic knowledge and processes. Such detailed and independently motivated constraints on grammatical knowledge ought to play a role in sentence comprehension. However most grammar-based explanations of processing difficulty in the literature have attempted to use grammatical representations and processes per se to explain processing difficulty. They did not take into account that the description of higher cognition in mind and brain encompasses two levels: on the one hand, at the macrolevel, symbolic computation is performed, and on the other hand, at the microlevel, computation is achieved through processes within a dynamical system. One critical question is therefore how linguistic theory and dynamical systems can be unified to provide an explanation for processing effects. Here, we present such a unification for a particular account to syntactic theory: namely a parser for Stabler's Minimalist Grammars, in the framework of Smolensky's Integrated Connectionist/Symbolic architectures. In simulations we demonstrate that the connectionist minimalist parser produces predictions which mirror global empirical findings from psycholinguistic research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined whether it is possible to identify the emotional content of behaviour from point-light displays where pairs of actors are engaged in interpersonal communication. These actors displayed a series of emotions, which included sadness, anger, joy, disgust, fear, and romantic love. In experiment 1, subjects viewed brief clips of these point-light displays presented the right way up and upside down. In experiment 2, the importance of the interaction between the two figures in the recognition of emotion was examined. Subjects were shown upright versions of (i) the original pairs (dyads), (ii) a single actor (monad), and (iii) a dyad comprising a single actor and his/her mirror image (reflected dyad). In each experiment, the subjects rated the emotional content of the displays by moving a slider along a horizontal scale. All of the emotions received a rating for every clip. In experiment 1, when the displays were upright, the correct emotions were identified in each case except disgust; but, when the displays were inverted, performance was significantly diminished for some ernotions. In experiment 2, the recognition of love and joy was impaired by the absence of the acting partner, and the recognition of sadness, joy, and fear was impaired in the non-veridical (mirror image) displays. These findings both support and extend previous research by showing that biological motion is sufficient for the perception of emotion, although inversion affects performance. Moreover, emotion perception from biological motion can be affected by the veridical or non-veridical social context within the displays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cooled infrared filters and dichroic beam splitters manufactured for the Mid-Infrared Instrument are key optical components for the selection and isolation of wavelengths in the study of astrophysical properties of stars, galaxies, and other planetary objects. We describe the spectral design and manufacture of the precision cooled filter coatings for the spectrometer (7 K) and imager (9 K). Details of the design methods used to achieve the spectral requirements, selection of thin film materials, deposition technique, and testing are presented together with the optical layout of the instrument. (C) 2008 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The associative sequence learning model proposes that the development of the mirror system depends on the same mechanisms of associative learning that mediate Pavlovian and instrumental conditioning. To test this model, two experiments used the reduction of automatic imitation through incompatible sensorimotor training to assess whether mirror system plasticity is sensitive to contingency (i.e., the extent to which activation of one representation predicts activation of another). In Experiment 1, residual automatic imitation was measured following incompatible training in which the action stimulus was a perfect predictor of the response (contingent) or not at all predictive of the response (noncontingent). A contingency effect was observed: There was less automatic imitation indicative of more learning in the contingent group. Experiment 2 replicated this contingency effect and showed that, as predicted by associative learning theory, it can be abolished by signaling trials in which the response occurs in the absence of an action stimulus. These findings support the view that mirror system development depends on associative learning and indicate that this learning is not purely Hebbian. If this is correct, associative learning theory could be used to explain, predict, and intervene in mirror system development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been proposed that there is a core impairment in autism spectrum conditions (ASC) to the mirror neuron system (MNS): If observed actions cannot be mapped onto the motor commands required for performance, higher order sociocognitive functions that involve understanding another person's perspective, such as theory of mind, may be impaired. However, evidence of MNS impairment in ASC is mixed. The present study used an 'automatic imitation' paradigm to assess MNS functioning in adults with ASC and matched controls, when observing emotional facial actions. Participants performed a pre-specified angry or surprised facial action in response to observed angry or surprised facial actions, and the speed of their action was measured with motion tracking equipment. Both the ASC and control groups demonstrated automatic imitation of the facial actions, such that responding was faster when they acted with the same emotional expression that they had observed. There was no difference between the two groups in the magnitude of the effect. These findings suggest that previous apparent demonstrations of impairments to the MNS in ASC may be driven by a lack of visual attention to the stimuli or motor sequencing impairments, and therefore that there is, in fact, no MNS impairment in ASC. We discuss these findings with reference to the literature on MNS functioning and imitation in ASC, as well as theories of the role of the MNS in sociocognitive functioning in typical development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite nearly two decades of research on mirror neurons, there is still much debate about what they do. The most enduring hypothesis is that they enable ‘action understanding’. However, recent critical reviews have failed to find compelling evidence in favour of this view. Instead, these authors argue that mirror neurons are produced by associative learning and therefore that they cannot contribute to action understanding. The present opinion piece suggests that this argument is flawed. We argue that mirror neurons may both develop through associative learning and contribute to inferences about the actions of others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although extensively studied within the lidar community, the multiple scattering phenomenon has always been considered a rare curiosity by radar meteorologists. Up to few years ago its appearance has only been associated with two- or three-body-scattering features (e.g. hail flares and mirror images) involving highly reflective surfaces. Recent atmospheric research aimed at better understanding of the water cycle and the role played by clouds and precipitation in affecting the Earth's climate has driven the deployment of high frequency radars in space. Examples are the TRMM 13.5 GHz, the CloudSat 94 GHz, the upcoming EarthCARE 94 GHz, and the GPM dual 13-35 GHz radars. These systems are able to detect the vertical distribution of hydrometeors and thus provide crucial feedbacks for radiation and climate studies. The shift towards higher frequencies increases the sensitivity to hydrometeors, improves the spatial resolution and reduces the size and weight of the radar systems. On the other hand, higher frequency radars are affected by stronger extinction, especially in the presence of large precipitating particles (e.g. raindrops or hail particles), which may eventually drive the signal below the minimum detection threshold. In such circumstances the interpretation of the radar equation via the single scattering approximation may be problematic. Errors will be large when the radiation emitted from the radar after interacting more than once with the medium still contributes substantially to the received power. This is the case if the transport mean-free-path becomes comparable with the instrument footprint (determined by the antenna beam-width and the platform altitude). This situation resembles to what has already been experienced in lidar observations, but with a predominance of wide- versus small-angle scattering events. At millimeter wavelengths, hydrometeors diffuse radiation rather isotropically compared to the visible or near infrared region where scattering is predominantly in the forward direction. A complete understanding of radiation transport modeling and data analysis methods under wide-angle multiple scattering conditions is mandatory for a correct interpretation of echoes observed by space-borne millimeter radars. This paper reviews the status of research in this field. Different numerical techniques currently implemented to account for higher order scattering are reviewed and their weaknesses and strengths highlighted. Examples of simulated radar backscattering profiles are provided with particular emphasis given to situations in which the multiple scattering contributions become comparable or overwhelm the single scattering signal. We show evidences of multiple scattering effects from air-borne and from CloudSat observations, i.e. unique signatures which cannot be explained by single scattering theory. Ideas how to identify and tackle the multiple scattering effects are discussed. Finally perspectives and suggestions for future work are outlined. This work represents a reference-guide for studies focused at modeling the radiation transport and at interpreting data from high frequency space-borne radar systems that probe highly opaque scattering media such as thick ice clouds or precipitating clouds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Establishing a molecular-level understanding of enantioselectivity and chiral resolution at the organic−inorganic interfaces is a key challenge in the field of heterogeneous catalysis. As a model system, we investigate the adsorption geometry of serine on Cu{110} using a combination of low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The chirality of enantiopure chemisorbed layers, where serine is in its deprotonated (anionic) state, is expressed at three levels: (i) the molecules form dimers whose orientation with respect to the substrate depends on the molecular chirality, (ii) dimers of l- and d-enantiomers aggregate into superstructures with chiral (−1 2; 4 0) lattices, respectively, which are mirror images of each other, and (iii) small islands have elongated shapes with the dominant direction depending on the chirality of the molecules. Dimer and superlattice formation can be explained in terms of intra- and interdimer bonds involving carboxylate, amino, and β−OH groups. The stability of the layers increases with the size of ordered islands. In racemic mixtures, we observe chiral resolution into small ordered enantiopure islands, which appears to be driven by the formation of homochiral dimer subunits and the directionality of interdimer hydrogen bonds. These islands show the same enantiospecific elongated shapes those as in low-coverage enantiopure layers.