25 resultados para diagnostic and prognostic algorithms developmen
Resumo:
With the latest advances in the area of advanced computer architectures we are seeing already large scale machines at petascale level and we are discussing exascale computing. All these require efficient scalable algorithms in order to bridge the performance gap. In this paper examples of various approaches of designing scalable algorithms for such advanced architectures will be given and the corresponding properties of these algorithms will be outlined and discussed. Examples will outline such scalable algorithms applied to large scale problems in the area Computational Biology, Environmental Modelling etc. The key properties of such advanced and scalable algorithms will be outlined.
Resumo:
This paper formally derives a new path-based neural branch prediction algorithm (FPP) into blocks of size two for a lower hardware solution while maintaining similar input-output characteristic to the algorithm. The blocked solution, here referred to as B2P algorithm, is obtained using graph theory and retiming methods. Verification approaches were exercised to show that prediction performances obtained from the FPP and B2P algorithms differ within one mis-prediction per thousand instructions using a known framework for branch prediction evaluation. For a chosen FPGA device, circuits generated from the B2P algorithm showed average area savings of over 25% against circuits for the FPP algorithm with similar time performances thus making the proposed blocked predictor superior from a practical viewpoint.
Resumo:
An important goal in computational neuroanatomy is the complete and accurate simulation of neuronal morphology. We are developing computational tools to model three-dimensional dendritic structures based on sets of stochastic rules. This paper reports an extensive, quantitative anatomical characterization of simulated motoneurons and Purkinje cells. We used several local and global algorithms implemented in the L-Neuron and ArborVitae programs to generate sets of virtual neurons. Parameters statistics for all algorithms were measured from experimental data, thus providing a compact and consistent description of these morphological classes. We compared the emergent anatomical features of each group of virtual neurons with those of the experimental database in order to gain insights on the plausibility of the model assumptions, potential improvements to the algorithms, and non-trivial relations among morphological parameters. Algorithms mainly based on local constraints (e.g., branch diameter) were successful in reproducing many morphological properties of both motoneurons and Purkinje cells (e.g. total length, asymmetry, number of bifurcations). The addition of global constraints (e.g., trophic factors) improved the angle-dependent emergent characteristics (average Euclidean distance from the soma to the dendritic terminations, dendritic spread). Virtual neurons systematically displayed greater anatomical variability than real cells, suggesting the need for additional constraints in the models. For several emergent anatomical properties, a specific algorithm reproduced the experimental statistics better than the others did. However, relative performances were often reversed for different anatomical properties and/or morphological classes. Thus, combining the strengths of alternative generative models could lead to comprehensive algorithms for the complete and accurate simulation of dendritic morphology.
Resumo:
Two so-called “integrated” polarimetric rate estimation techniques, ZPHI (Testud et al., 2000) and ZZDR (Illingworth and Thompson, 2005), are evaluated using 12 episodes of the year 2005 observed by the French C-band operational Trappes radar, located near Paris. The term “integrated” means that the concentration parameter of the drop size distribution is assumed to be constant over some area and the algorithms retrieve it using the polarimetric variables in that area. The evaluation is carried out in ideal conditions (no partial beam blocking, no ground-clutter contamination, no bright band contamination, a posteriori calibration of the radar variables ZH and ZDR) using hourly rain gauges located at distances less than 60 km from the radar. Also included in the comparison, for the sake of benchmarking, is a conventional Z = 282R1.66 estimator, with and without attenuation correction and with and without adjustment by rain gauges as currently done operationally at Météo France. Under those ideal conditions, the two polarimetric algorithms, which rely solely on radar data, appear to perform as well if not better, pending on the measurements conditions (attenuation, rain rates, …), than the conventional algorithms, even when the latter take into account rain gauges through the adjustment scheme. ZZDR with attenuation correction is the best estimator for hourly rain gauge accumulations lower than 5 mm h−1 and ZPHI is the best one above that threshold. A perturbation analysis has been conducted to assess the sensitivity of the various estimators with respect to biases on ZH and ZDR, taking into account the typical accuracy and stability that can be reasonably achieved with modern operational radars these days (1 dB on ZH and 0.2 dB on ZDR). A +1 dB positive bias on ZH (radar too hot) results in a +14% overestimation of the rain rate with the conventional estimator used in this study (Z = 282R^1.66), a -19% underestimation with ZPHI and a +23% overestimation with ZZDR. Additionally, a +0.2 dB positive bias on ZDR results in a typical rain rate under- estimation of 15% by ZZDR.
Resumo:
A new database of weather and circulation type catalogs is presented comprising 17 automated classification methods and five subjective classifications. It was compiled within COST Action 733 "Harmonisation and Applications of Weather Type Classifications for European regions" in order to evaluate different methods for weather and circulation type classification. This paper gives a technical description of the included methods using a new conceptual categorization for classification methods reflecting the strategy for the definition of types. Methods using predefined types include manual and threshold based classifications while methods producing types derived from the input data include those based on eigenvector techniques, leader algorithms and optimization algorithms. In order to allow direct comparisons between the methods, the circulation input data and the methods' configuration were harmonized for producing a subset of standard catalogs of the automated methods. The harmonization includes the data source, the climatic parameters used, the classification period as well as the spatial domain and the number of types. Frequency based characteristics of the resulting catalogs are presented, including variation of class sizes, persistence, seasonal and inter-annual variability as well as trends of the annual frequency time series. The methodological concept of the classifications is partly reflected by these properties of the resulting catalogs. It is shown that the types of subjective classifications compared to automated methods show higher persistence, inter-annual variation and long-term trends. Among the automated classifications optimization methods show a tendency for longer persistence and higher seasonal variation. However, it is also concluded that the distance metric used and the data preprocessing play at least an equally important role for the properties of the resulting classification compared to the algorithm used for type definition and assignment.
Resumo:
The ruthenium complex [Ru(phen)2(dppz)] (where phen is a phenanthroline and dppz a dipyridyl–phenazine ligand) is known as a ‘light switch’ complex because its luminescence in solution is significantly enhanced in the presence of DNA. This property is poised to serve in diagnostic and therapeutic applications, but its binding mode with DNA needs to be elucidated further. Here, we describe the crystal structures of the L enantiomer bound to two oligonucleotide duplexes. The dppz ligand intercalates symmetrically and perpendicularly from the minor groove of the d(CCGGTACCGG)2 duplex at the central TA/TA step, but not at the central AT/AT step of d(CCGGATCCGG)2. In both structures, however, a second ruthenium complex links the duplexes through the combination of a shallower angled intercalation into the C1C2/G9G10 step at the end of the duplex, and semi-intercalation into the G3G4 step of an adjacent duplex. The TA/TA specificity of the perpendicular intercalation arises from the packing of phenanthroline ligands against the adenosine residue.
Resumo:
Strategic marketing planning is now widely adopted by business-to-business organizations. While marketing planning principles are well established, practitioners attempting to implement the process often find their progress impeded by a variety of barriers. These barriers are explored through a review of published evidence and case study analysis of several organizations. This analysis exposes three levels of barriers to effective business-to-business marketing planning, relating to (i) organizational infrastructure, (ii) the planning process and (iii) implementation. These barriers reflect the synoptic nature of planning in many organizations. The findings lead to the development of a practitioner-oriented diagnostic and treatment tool which guides managers through the marketing planning process. Although this diagnostic deals specifically with issues which are relevant to the marketing planner, its wider implications for strategic planning are also explored.
Resumo:
In the concluding paper of this tetralogy, we here use the different geomagnetic activity indices to reconstruct the near-Earth interplanetary magnetic field (IMF) and solar wind flow speed, as well as the open solar flux (OSF) from 1845 to the present day. The differences in how the various indices vary with near-Earth interplanetary parameters, which are here exploited to separate the effects of the IMF and solar wind speed, are shown to be statistically significant at the 93% level or above. Reconstructions are made using four combinations of different indices, compiled using different data and different algorithms, and the results are almost identical for all parameters. The correction to the aa index required is discussed by comparison with the Ap index from a more extensive network of mid-latitude stations. Data from the Helsinki magnetometer station is used to extend the aa index back to 1845 and the results confirmed by comparison with the nearby St Petersburg observatory. The optimum variations, using all available long-term geomagnetic indices, of the near-Earth IMF and solar wind speed, and of the open solar flux, are presented; all with ±2sigma� uncertainties computed using the Monte Carlo technique outlined in the earlier papers. The open solar flux variation derived is shown to be very similar indeed to that obtained using the method of Lockwood et al. (1999).
Resumo:
Satellite data are increasingly used to provide observation-based estimates of the effects of aerosols on climate. The Aerosol-cci project, part of the European Space Agency's Climate Change Initiative (CCI), was designed to provide essential climate variables for aerosols from satellite data. Eight algorithms, developed for the retrieval of aerosol properties using data from AATSR (4), MERIS (3) and POLDER, were evaluated to determine their suitability for climate studies. The primary result from each of these algorithms is the aerosol optical depth (AOD) at several wavelengths, together with the Ångström exponent (AE) which describes the spectral variation of the AOD for a given wavelength pair. Other aerosol parameters which are possibly retrieved from satellite observations are not considered in this paper. The AOD and AE (AE only for Level 2) were evaluated against independent collocated observations from the ground-based AERONET sun photometer network and against “reference” satellite data provided by MODIS and MISR. Tools used for the evaluation were developed for daily products as produced by the retrieval with a spatial resolution of 10 × 10 km2 (Level 2) and daily or monthly aggregates (Level 3). These tools include statistics for L2 and L3 products compared with AERONET, as well as scoring based on spatial and temporal correlations. In this paper we describe their use in a round robin (RR) evaluation of four months of data, one month for each season in 2008. The amount of data was restricted to only four months because of the large effort made to improve the algorithms, and to evaluate the improvement and current status, before larger data sets will be processed. Evaluation criteria are discussed. Results presented show the current status of the European aerosol algorithms in comparison to both AERONET and MODIS and MISR data. The comparison leads to a preliminary conclusion that the scores are similar, including those for the references, but the coverage of AATSR needs to be enhanced and further improvements are possible for most algorithms. None of the algorithms, including the references, outperforms all others everywhere. AATSR data can be used for the retrieval of AOD and AE over land and ocean. PARASOL and one of the MERIS algorithms have been evaluated over ocean only and both algorithms provide good results.
Resumo:
Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum's User Level Failure Mitigation proposal has introduced an operation, MPI_Comm_shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI_Comm_shrink operation requires a fault tolerant failure detection and consensus algorithm. This paper presents and compares two novel failure detection and consensus algorithms. The proposed algorithms are based on Gossip protocols and are inherently fault-tolerant and scalable. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that in both algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus.