116 resultados para developmental pathways


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platelet endothelial cell adhesion molecule-1 (PECAM-1) inhibits platelet response to collagen and may also inhibit two other major platelet agonists ADP and thrombin although this has been less well explored. We hypothesized that the combined effect of inhibiting these three platelet activating pathways may act to significantly inhibit thrombus formation. We demonstrate a negative relationship between PECAM-1 surface expression and platelet response to cross-linked collagen related peptide (CRP-XL) and ADP, and an inhibitory effect of PECAM-1 clustering on platelet response to CRP-XL, ADP and thrombin. This combined inhibition of multiple signaling pathways results in a marked reduction in thrombus formation. (C) 2009 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of the present review is to assimilate current knowledge concerning the differing signalling transduction cascades that control muscle mass development and affect skeletal muscle phenotype following exercise or nutritional uptake. Effects of mechanical loading on protein synthesis are discussed. Muscle growth control is regulated by the interplay of growth promoting and growth suppressing factors, which act in concert. Much emphasis has been placed on understanding how increases in the rate of protein synthesis are induced in skeletal muscle during the adaptive process. One key point to emerge is that protein synthesis following resistance exercise or increased nutrient availability is mediated through changes in signal transduction involving the phosphorylation of mTOR and sequential activation of downstream targets. On the other hand, AMPK activation plays an important role in the inhibition of protein synthesis by suppressing the function of multiple translation regulators of the mTOR signalling pathway in response to cellular energy depletion and low metabolic conditions. The effects of exercise and/or nutritional uptake on the activation of signalling molecules that regulate protein synthesis are highlighted, providing a better understanding of the molecular changes in the cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The N-terminal fragment of pro-opiomelancortin (POMC) has been shown previously to act as an adrenal mitogen. However, little is known about the molecular mechanisms by which mitogenesis is stimulated, although it has been shown that N-POMC1-28 Stimulates the ERK pathway in human H295R cells. We have investigated signaling stimulated by N-POMC1-28 and N-POMC1-49 in the mouse Y1 cell line and found that both peptides stimulate ERK phosphorylation with maximal stimulation being achieved within 5 min. Similar results were observed for both MEK and c-Raf phosphorylation, although N-POMC1-49 stimulated the phosphorylation of Akt more robustly than N-POMC1-28. We also investigated the expression of tyrosine kinase receptors in adrenal cells. PCR utilizing degenerate primers was performed on cDNA from both Y1 cells and rat adrenal tissue. Sequencing of 114 clones from each cDNA population revealed the expression of a number of receptors, several of which have not been described previously in the adrenal. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We know little about the genomic events that led to the advent of a multicellular grade of organization in animals, one of the most dramatic transitions in evolution. Metazoan multicellularity is correlated with the evolution of embryogenesis, which presumably was underpinned by a gene regulatory network reliant on the differential activation of signaling pathways and transcription factors. Many transcription factor genes that play critical roles in bilaterian development largely appear to have evolved before the divergence of cnidarian and bilaterian lineages. In contrast, sponges seem to have a more limited suite of transcription factors, suggesting that the developmental regulatory gene repertoire changed markedly during early metazoan evolution. Using whole- genome information from the sponge Amphimedon queenslandica, a range of eumetazoans, and the choanoflagellate Monosiga brevicollis, we investigate the genesis and expansion of homeobox, Sox, T- box, and Fox transcription factor genes. Comparative analyses reveal that novel transcription factor domains ( such as Paired, POU, and T- box) arose very early in metazoan evolution, prior to the separation of extant metazoan phyla but after the divergence of choanoflagellate and metazoan lineages. Phylogenetic analyses indicate that transcription factor classes then gradually expanded at the base of Metazoa before the bilaterian radiation, with each class following a different evolutionary trajectory. Based on the limited number of transcription factors in the Amphimedon genome, we infer that the genome of the metazoan last common ancestor included fewer gene members in each class than are present in extant eumetazoans. Transcription factor orthologues present in sponge, cnidarian, and bilaterian genomes may represent part of the core metazoan regulatory network underlying the origin of animal development and multicellularity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant annexins are ubiquitous, soluble proteins capable of Ca2+-dependent and Ca2+-independent binding to endomembranes and the plasma membrane. Some members of this multigene family are capable of binding to F-actin, hydrolysing ATP and GTP, acting as peroxidases or cation channels. These multifunctional proteins are distributed throughout the plant and throughout the life cycle. Their expression and intracellular localization are under developmental and environmental control. The in vitro properties of annexins and their known, dynamic distribution patterns suggest that they could be central regulators or effectors of plant growth and stress signalling. Potentially, they could operate in signalling pathways involving cytosolic free calcium and reactive oxygen species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The intracellular signalling mechanisms that regulate ovarian follicle development are unclear; however, we have recently shown differences in the Akt and Erk signalling pathways in dominant compared to subordinate follicles. The aim of this study was to investigate the effects of inhibiting Akt and Erk phosphorylation on IGF- and gonadotropin- stimulated granulosa and theca cell function in vitro, and on follicle development in vivo. METHODS: Bovine granulosa and theca cells were cultured for six days and stimulated with FSH and/or IGF, or LH in combination with PD98059 (Erk inhibitor) and/or LY294002 (Akt inhibitor) and their effect on cell number and hormone secretion (estradiol, activin-A, inhibin-A, follistatin, progesterone and androstenedione) determined. In addition, ovarian follicles were treated in vivo with PD98059 and/or LY294002 in ewes on Day 3 of the cycle and follicles were recovered 48 hours later. RESULTS: We have shown that gonadotropin- and IGF-stimulated hormone production by granulosa and theca cells is reduced by treatment with PD98059 and LY294002 in vitro. Furthermore, treatment with PD98059 and LY294002 reduced follicle growth and oestradiol production in vivo. CONCLUSION: These results demonstrate an important functional role for the Akt and Erk signalling pathways in follicle function, growth and development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prenatal testosterone excess leads to neuroendocrine, ovarian, and metabolic disruptions, culminating in reproductive phenotypes mimicking that of women with polycystic ovary syndrome (PCOS). The objective of this study was to determine the consequences of prenatal testosterone treatment on periovulatory hormonal dynamics and ovulatory outcomes. To generate prenatal testosterone-treated females, pregnant sheep were injected intramuscularly (days 30-90 of gestation, term = 147 days) with 100 mg of testosterone-propionate in cottonseed oil semi-weekly. Female offspring born to untreated control females and prenatal testosterone-treated females were then studied during their first two breeding seasons. Sheep were given two injections of prostaglandin F-2alpha 11 days apart, and blood samples were collected at 2-h intervals for 120 h, 10-min intervals for 8 h during the luteal phase (first breeding season only), and daily for an additional 15 days to characterize changes in reproductive hormonal dynamics. During the first breeding season, prenatal testosterone-treated females manifested disruptions in the timing and magnitude of primary gonadotropin surges, luteal defects, and reduced responsiveness to progesterone negative feedback. Disruptions in the periovulatory sequence of events during the second breeding season included: 1) delayed but increased preovulatory estradiol rise, 2) delayed and severely reduced primary gonadotropin surge in prenatal testosterone-treated females having an LH surge, 3) tendency for an amplified secondary FSH surge and a shift in the relative balance of FSH regulatory proteins, and 4) luteal responses that ranged from normal to anovulatory. These outcomes are likely to be of relevance to developmental origin of infertility disorders and suggest that differences in fetal exposure or fetal susceptibility to testosterone may account for the variability in reproductive phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Myostatin, a member of the transforming growth factor-beta (TGF-beta) family, plays a key role in skeletal muscle myogenesis by limiting hyperplastic and hypertrophic muscle growth. In cardiac muscle, myostatin has been shown to limit agonist-induced cardiac hypertrophic growth. However, its role in cardiac hyperplastic growth remains undetermined. The aim of this study was to characterise the expression of myostatin in developing myocardium, determine its effect on cardiomyocyte proliferation, and explore the signalling mechanisms affected by myostatin in dividing cardiomyocytes. Methods: We used quantitative PCR and Western blotting to study the expression of myostatin in cardiomyocytes isolated from rat myocardium at different developmental ages. We. determined the effect of recombinant myostatin on proliferation and cell viability in dividing cardiomyocytes in culture. We analysed myostatin's effect on cardiomyocyte cell cycle progression by flow cytometry and used Western blotting to explore the signalling mechanisms involved. Results: Myostatin is expressed differentially in cardiomyocytes during cardiac development such that increasing expression correlated with a low cardiomyocyte proliferation index. Proliferating foetal cardiomyocytes, from embryos at 18 days of gestation, expressed low levels of myostatin mRNA and protein, whereas isolated cardiomyocytes from postnatal day 10 hearts, wherein the majority of cardiomyocytes have lost their ability to proliferate, displayed a 6-fold increase in myostatin expression. Our in vitro studies demonstrated that myostatin inhibited proliferation of dividing foetal and neonatal cardiomyocytes. Flow cytometric analysis showed that this inhibition occurs mainly via a block in the G1-S phase transition of the cardiomyocyte cell cycle. Western blot analysis showed that part of the mechanism underpinning the inhibition of cardiomyocyte proliferation by myostatin involves phosphorylation of SMAD2 and altered expressions of the cell cycle proteins p21 and CDK2. Conclusions: We conclude that myostatin is an inhibitor of cardiomyocyte proliferation with the potential to limit cardiomyocyte hyperplastic growth by altering cardiac cell cycle progression. (c) 2007 European Society of Cardiology. Published by Elsevier B.V. All fights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, exciting progress has been made towards unravelling the complex intraovarian control mechanisms that, in concert with systemic signals, coordinate the recruitment, selection and growth of follicles from the primordial stage through to ovulation and corpus luteum formation. A plethora of growth factors, many belonging to the transforming growth factor-beta (TGF-beta) superfamily, are expressed by ovarian somatic cells and oocytes in a developmental, stage-related manner and function as intraovarian regulators of folliculogenesis. Two such factors, bone morphogenetic proteins, RMP-4 and BMP-7, are expressed by ovarian stromal cells and/or theca cells and have recently been implicated as positive regulators of the primordial-to-primary follicle transition. In contrast, evidence indicates a negative role for anti-Mullerian hormone (AMH, also known as Mullerian-inhibiting substance) of pre-granulosa/granulosa cell origin in this key event and subsequent progression to the antral stage. Two other TGF-beta superfamily members, growth and differentiation factor-9 (GDF-9) and BMP-15 (also known as GDF-9B) are expressed in an oocyte-specific manner from a very early stage and play key roles in promoting follicle growth beyond the primary stage; mice with null mutations in the gdf-9 gene or ewes with inactivating mutations in gdf-9 or bmp-15 genes are infertile with follicle development arrested at the primary stage. Studies on later stages of follicle development indicate positive roles for granulosa cell-derived activin, BMP-2, -5 and -6, theca cell-derived BMP-2, -4 and -7 and oocyte-derived BMP-6 in promoting granulosa cell proliferation, follicle survival and prevention of premature luteinization and/or atresia. Concomitantly, activin, TGF-beta and several BMPs may exert paracrine actions on theca cells to attenuate LH-dependent androgen production in small to medium-size antral follicles. Dominant follicle selection in monovular species may depend on differential FSH sensitivity amongst a growing cohort of small antral follicles. Changes in intrafollicular activins, GDF-9, AMH and several BMPs may contribute to this selection process by modulating both FSH- and IGF-dependent signalling pathways in granulosa cells. Activin may also play a positive role in oocyte maturation and acquisition of developmental competence. in addition to its endocrine role to suppress FSH secretion, increased output of inhibin by the selected dominant follicle(s) may upregulate LH-induced androgen secretion that is required to sustain a high level of oestradiol secretion during the pre-ovulatory phase. Advances in our understanding of intraovarian regulatory mechanisms should facilitate the development of new approaches for monitoring and manipulating ovarian function and improving fertility in domesticated livestock, endangered species and man.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ovaries were collected over a period of two years from heifers slaughtered at under 30 months of age and used to harvest 1757 oocytes. After in vitro maturation, fertilisation and culture, the proportions of oocytes and cleaved embryos that developed to blastocysts were significantly higher (P < 0.01) in the autumn, from September to November, than in the spring, from March to May. In contrast, embryo development, as assessed by oocytes that developed to eight or more cells and blastocysts, was lowest (P < 0.01) in the spring. These results were consistent during the two-year study, indicating a seasonal fluctuation in oocyte competence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flower and inflorescence reversion involve a switch from floral development back to vegetative development, thus rendering flowering a phase in an ongoing growth pattern rather than a terminal act of the meristem. Although it can be considered an unusual event, reversion raises questions about the nature and function of flowering. It is linked to environmental conditions and is most often a response to conditions opposite to those that induce flowering. Research on molecular genetic mechanisms underlying plant development over the last 15 years has pinpointed some of the key genes involved in the transition to flowering and flower development. Such investigations have also uncovered mutations which reduce floral maintenance or alter the balance between vegetative and floral features of the plant. How this information contributes to an understanding of floral reversion is assessed here. One issue that arises is whether floral commitment (defined as the ability to continue flowering when inductive conditions no longer exist) is a developmental switch affecting the whole plant or is a mechanism which assigns autonomy to individual meristems. A related question is whether floral or vegetative development is the underlying default pathway of the plant. This review begins by considering how studies of flowering in Arabidopsis thaliana have aided understanding of mechanisms of floral maintenance. Arabidopsis has not been found to revert to leaf production in any of the conditions or genetic backgrounds analysed to date. A clear-cut reversion to leaf production has, however, been described in Impatiens balsamina. It is proposed that a single gene controls whether Impatiens reverts or can maintain flowering when inductive conditions are removed, and it is inferred that this gene functions to control the synthesis or transport of a leaf-generated signal. But it is also argued that the susceptibility of Impatiens to reversion is a consequence of the meristem-based mechanisms controlling development of the flower in this species. Thus, in Impatiens, a leaf-derived signal is critical for completion of flowering and can be considered to be the basis of a plant-wide floral commitment that is achieved without accompanying meristem autonomy. The evidence, derived from in vitro and other studies, that similar mechanisms operate in other species is assessed. It is concluded that most species (including Arabidopsis) are less prone to reversion because signals from the leaf are less ephemeral, and the pathways driving flower development have a high level of redundancy that generates meristem autonomy even when leaf-derived signals are weak. This gives stability to the flowering process, even where its initiation is dependent on environmental cues. On this interpretation, Impatiens reversion appears as an anomaly resulting from an unusual combination of leaf signalling and meristem regulation. Nevertheless, it is shown that the ability to revert can serve a function in the life history strategy (perenniality) or reproductive habit (pseudovivipary) of many plants. In these instances reversion has been assimilated into regular plant development and plays a crucial role there.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero xyeicosatetraenoic acid (12-H(P)ETE). The physiological mechanisms that acutely control LOX product generation in mammalian cells are uncharacterized. Human platelets that contain a 12-LOX isoform (p12-LOX) were used to define pathways that activate H(P)ETE synthesis in the vasculature. Collagen and collagen-related peptide (CRP) (1 to 10 g/mL) acutely induced platelet 12-H(P)ETE synthesis. This implicated the collagen receptor glycoprotein VI (GPVI), which signals via the immunoreceptor-based activatory motif (ITAM)- containing FcR chain. Conversely, thrombin only activated at high concentrations ( 0.2 U/mL), whereas U46619 and ADP alone were ineffective. Collagen or CRP-stimulated 12-H(P)ETE generation was inhibited by staurosporine, PP2, wortmannin, BAPTA/AM, EGTA, and L-655238, implicating src-tyrosine kinases, PI3-kinase, Ca2 mobilization, and p12-LOX translocation. In contrast, protein kinase C (PKC) inhibition potentiated 12-H(P)ETE generation. Finally, activation of the immunoreceptor tyrosine-based inhibitory motif (ITIM)– containing platelet endothelial cell adhesion molecule (PECAM-1) inhibited p12-LOX product generation. This study characterizes a receptor-dependent pathway for 12-H(P)ETE synthesis via the collagen receptor GPVI, which is negatively regulated by PECAM-1 and PKC, and demonstrates a novel link between immune receptor signaling and lipid mediator generation in the vasculature. (Circ Res. 2004;94:1598-1605.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammalian cells, DNA ligase IIIalpha and DNA ligase I participate in the short- and long-patch base excision repair pathways, respectively. Using an in vitro repair assay employing DNA ligase-depleted cell extracts and DNA substrates containing a single lesion repaired either through short-patch (regular abasic site) or long-patch (reduced abasic site) base excision repair pathways, we addressed the question whether DNA ligases are specific to each pathway or if they are exchangeable. We find that immunodepletion of DNA ligase I did not affect the short-patch repair pathway but blocked long-patch repair, suggesting that DNA ligase IIIa is not able to substitute DNA ligase I during long-patch repair. In contrast, immunodepletion of DNA ligase IIIa did not significantly affect either pathway. Moreover, repair of normal abasic sites in wild-type and X-ray cross-complementing gene 1 (XRCC1)-DNA ligase IIIalpha-immunodepleted cell extracts involved similar proportions of short- and long-patch repair events. This suggests that DNA ligase I was able to efficiently substitute the XRCC1-DNA ligase IIIa complex during short-patch repair.