24 resultados para design innovation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – Innovation in facilities management (FM) is a complex process as FM is a diverse discipline. This paper aims to use innovation trajectories to explore this complex process through the introduction of a technology innovation in two FM services of security and workspace management. It also aims to consider the discourse of individuals within their trajectory to understand their positions toward the innovation. Design/methodology/approach – A two-year case study was conducted and it was based in an in-house FM department that was part of a financial institution. The specific methods used for the paper were semi-structured interviews with key participants of the project. Critical discourse analysis was used to examine the data. Findings – Individuals who were involved in introducing the technology to the FM department were both internal and external to FM as innovation in FM does not happen in isolation to the organisation. Innovation trajectories were often intertwined or occurred simultaneously during the process of a project which sometimes resulted in conflict. Tensions within the discourse of ownership of the project were particularly apparent as this discourse had a power dimension in driving the project through to implementation. Research limitations/implications – The research is limited by being a single case study so it is not possible to generalise findings but the findings may have resonances with other organisations. Originality/value – The paper presents an original idea about how to understand innovation processes in FM services.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – This paper examines the role of location-specific (L) advantages in the spatial distribution of multinational enterprise (MNE) R&D activity. The meaning of L advantages is revisited. In addition to L advantages that are industry-specific, the paper emphasises that there is an important category of L advantages, referred to as collocation advantages. Design/methodology/approach – Using the OLI framework, this paper highlights that the innovation activities of MNEs are about interaction of these variables, and the essential process of internalising L advantages to enhance and create firm-specific advantages. Findings – Collocation advantages derive from spatial proximity to specific unaffiliated firms, which may be suppliers, competitors, or customers. It is also argued that L advantages are not always public goods, because they may not be available to all firms at a similar or marginal cost. These costs are associated with access and internalisation of L advantages, and – especially in the case of R&D – are attendant with the complexities of embeddedness. Originality/value – The centralisation/decentralisation, spatial separation/collocation debates in R&D location have been mistakenly viewed as a paradox facing firms, instead of as a trade-off that firms must make.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines how innovation-related capabilities for production, design and marketing develop at the subsidiary level within multinational enterprises (MNEs). We focus on how subsidiary autonomy and changing opportunities to access internal (MNE) and external (host country) sources of capability contribute in a combined way to the accumulation of specialist capabilities in five Taiwan-based MNE subsidiaries in the semiconductor industry. Longitudinal analysis shows how the accumulation process is subject to discontinuities, as functional divisions are (re)opened and closed during the lifetime of the subsidiary. A composite set of innovation output measures also shows significant variations in within-function levels of capability across our sample. We conclude that subsidiary specialisation and unique subsidiary-specific advantages have evolved in a way that is strongly influenced by the above factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous Building Information Modelling (BIM) tools are well established and potentially beneficial in certain uses. However, issues of adoption and implementation persist, particularly for on-site use of BIM tools in the construction phase. We describe an empirical case-study of the implementation of an innovative ‘Site BIM’ system on a major hospital construction project. The main contractor on the project developed BIM-enabled tools to allow site workers using mobile tablet personal computers to access design information and to capture work quality and progress data on-site. Accounts show that ‘Site BIM’, while judged to be successful and actively supporting users, was delivered through an exploratory and emergent development process of informal prototyping. Technical IT skills were adopted into the construction project through personal relationships and arrangements rather than formal processes. Implementation was driven by construction project employees rather than controlled centrally by the corporate IT function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Code for Sustainable Homes (the Code) will require new homes in the United Kingdom to be ‘zero carbon’ from 2016. Drawing upon an evolutionary innovation perspective, this paper contributes to a gap in the literature by investigating which low and zero carbon technologies are actually being used by house builders, rather than the prevailing emphasis on the potentiality of these technologies. Using the results from a questionnaire three empirical contributions are made. First, house builders are selecting a narrow range of technologies. Second, these choices are made to minimise the disruption to their standard design and production templates (SDPTs). Finally, the coalescence around a small group of technologies is expected to intensify with solar-based technologies predicted to become more important. This paper challenges the dominant technical rationality in the literature that technical efficiency and cost benefits are the primary drivers for technology selection. These drivers play an important role but one which is mediated by the logic of maintaining the SDPTs of the house builders. This emphasises the need for construction diffusion of innovation theory to be problematized and developed within the context of business and market regimes constrained and reproduced by resilient technological trajectories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose This paper examines how multinational enterprises (MNEs) and local partners, including suppliers, customers, and competitors in China, improve their innovation capabilities through collaboration. We analyse this collaboration as a three-way interaction between the ownership-specific (O) advantages or firm-specific assets (FSAs) of the MNE subsidiary, the FSAs of the local partner, and the location-specific assets of the host location. Design/methodology/approach Our propositions are examined through a survey of 320 firms, supplemented with 30 in-depth case studies, based in mainland China. Findings We find that the recombination of asset-type (Oa) FSAs and transaction-type (Ot) FSAs from both partners leads to new innovation-related ownership advantages, or ‘recombinant advantages’. Ot FSAs, in the form of access to local suppliers, customers or government networks are particularly important for reducing the liability of foreignness for MNEs. Originality/value The study reveals important patterns of reciprocal transfer, sharing, and integration for different asset categories (tacit, codified) and different forms of FSA and explicitly links these to different innovation performance outcomes. The paper reports on these findings, making an empirical contribution in an important context (China-based partnerships). We also contribute to conceptual developments, connecting various kinds of FSA, tacit and codifiable assets and ‘recombinant advantages’. Limited conceptual, methodological, and empirical contributions are made in linking asset integration with (measurable) innovation performance outcomes in international partnerships.