56 resultados para density functional calculations


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The product of the Asinger reaction between elemental sulfur, n-butylamine and acetophenone is 8-(n-butylaminophenylmethyliden)-1,2,3,4,5,6,7-heptathiocane which contains a CS7 ring. A combination of infrared, Raman and inelastic neutron scattering spectroscopies with periodic density functional theory calculations is used to provide a complete assignment of the vibrational spectra of this unusual species. The similarity between the Raman spectra of the compound and that of elemental sulfur is particularly striking. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Infrared intensities of the fundamental, overtone and combination transitions in furan, pyrrole and thiophene have been calculated using the variational normal coordinate code MULTIMODE. We use pure vibrational wavefunctions, and quartic force fields and cubic dipole moment vector surfaces, generated by density functional theory. The results are compared graphically with second-order perturbation calculations and with relative intensities from experiment for furan and pyrrole.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ligands PhL and MeL are obtained by condensing 2-formylpyridine with benzil dihydrazone and diacetyl dihydrazone, respectively, in 2: 1 molar proportion. With silver( I), PhL yields a double-stranded dinuclear cationic helicate 1 in which the metal is tetrahedral but MeL gives a cationic one-dimensional polymeric complex 2 where silver( I) is distorted square planar and the ligand backbone is nearly planar. In both complexes, metal: ligand ratio is 1: 1. Ab initio calculations on the ligands at the HF/6-31+G* level reveal that while PhL strongly prefers a helical conformation, MeL has a natural inclination to remain in a planar conformation. Density functional theory calculations on model silver( I) complexes show that formation of the linear polymer in the case of MeL is also an important factor in imposing the planar geometry of Ag(I) in 2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ab initio calculations using density functional theory have shown that the reactions that occur between artemisinin, 1, a cyclic trioxane active against malaria, and some metal ions and complexes lead to a series of radicals which are probably responsible for its therapeutic activity. In particular it has been shown that the interaction of Fe(H) with artemisinin causes the O-O bond to be broken as indeed does Fe(III) and Cu(I), while Zn(II) does not. Calculations were carried out with Fe(II) in several different forms including the bare ion, [Fe(H2O)(5)](2+) and [FeP(Im)] (P, porphyrin; Im, imadazole) and similar results were obtained. The resulting oxygen-based radicals are readily converted to more stable carbon-based radicals and/or. stable products. Similar radicals and products are also formed from two simple model trioxanes 2 and 3 that show little or no therapeutic action against malaria although some subtle differences were obtained. This suggests that the scaffold surrounding the pharmacophore may be involved in molecular recognition events allowing efficient uptake of this trioxane warhead into the parasite. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have used synchrotron-based high-resolution X-ray photoelectron spectroscopy in combination with ab initio density functional theory calculations to investigate the characteristics of water and CO adsorption on the bimetallic Cu/Pt{110}-(2 x 1) surface at a Cu coverage near 0.5 ML. Cu fills the troughs of the reconstructed clean surface forming nanowires, which are stable up to 830 K. Their presence dramatically influences the adsorption of water and CO. Water adsorption changes from intact to partially dissociated while the desorption temperature of CO on this surface increases by up to 27 K with respect to the clean Pt{110} surface. Ab initio calculations and experimental valence band spectra reveal that the Cu 3d-band is narrowed and shifted upward with respect to bulk Cu surfaces. This and electron donation to surface Pt atoms cause the increase in the bond strength between CO and the Pt surface atoms. The pathway for water dissociation occurs via Cu surface atoms. The heat of adsorption of water bonding to Cu surface atoms was calculated to be 0.82 eV, which is significantly higher than on the clean Pt{110} surface; the activation energy for partial dissociation is 0.53 eV (not corrected for zero point energy).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electrochemical and spectroelectrochemical techniques were employed to study in detail the formation and so far unreported spectroscopic properties of soluble electroactive molecular chains with nonbridged metal-metal backbones, namely, [{Ru-0(CO)(PrCN)(bpy)}(m)](n) (m = 0, -1) and [{Ru-0(CO)(bpy)Cl}(m)](n) (m = -1, -2; bpy = 2,2'-bipyridine). The precursors cis-(Cl)-[Ru-II(CO)(MeCN)(bpy)Cl-2] (in PrCN) and mer-[Ru-II(CO)(bpy)Cl-3](-) (in tetrahydrofuran (THF) and PrCN) undergo one-electron reductions to reactive radicals [Ru-II(CO)(MeCN)(bpy(center dot-))Cl-2](-) and [Ru-II(CO)(bpy(center dot-))Cl-3](2-), respectively. Both [bpy(center dot-)]-containing species readily electropolymerize on concomitant dissociation of two chloride ligands and consumption of a second electron. Along this path, mer-to-fac isomerization of the bpy-reduced trichlorido complex (supported by density functional theory calculations) and a concentration-dependent oligomerization process contribute to the complex reactivity pattern. In situ spectroelectrochemistry (IR, UV/vis a has revealed that the charged polymer [{Ru-0(CO)(bpy)Cl}(-)](n) is stable in THF, but in PrCN it converts readily to [Ru-0(CO)(PrCN)(bpy)](n). An excess of chloride ions retards this substitution at low temperatures. Both polymetallic chains are completely soluble in the electrolyte solution and can be reduced reversibly to the corresponding [bpy(center dot-)]-containing species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Free radicals from one-electron oxidation of the antimalarial drug pyronaridine have been studied by pulse radiolysis. The results show that pyronaridine is readily oxidised to an intermediate semi-iminoquine radical by inorganic and organic free radicals, including those derived from tryptophan and acetaminophen. The pyronaridine radical is rapidly reduced by both ascorbate and caffeic acid. The results indicate that the one-electron reduction potential of the pyronaridine radical at neutral pH lies between those of acetaminophen (707 mV) and caffeic acid (534 mV). The pyronaridine radical decays to produce the iminoquinone, detected by electrospray mass spectrometry, in a second-order process that density functional theory (DFT) calculations (UB3LYP/6-31+G*) suggest is a disproportionation reaction. Important calculated dimensions of pyronaridine, its phenoxyl and aminyl radical, as well as the iminoquinone, are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

UV absorption spectra of five methyl-substituted hydroxy-cyclohexadienyl radicals, formed by the addition of the hydroxyl radical (OH) to toluene (methyl benzene), o-, m- and p-xylene (1,2-, 1,3- and 1,4-dimethyl benzene, respectively) and mesitylene (1,3,5-trimethylbenzene), have been determined at 298 K, 1 atm pressure (N-2 + O-2), and the corresponding absolute absorption cross-sections measured, using laser flash photolysis and time-resolved UV absorption detection. As observed for other cyclohexadienyl-type radicals, a strong absorption band is present in the 260-340 nm spectral region, with maximum cross-sections in the range (0.9-2.2) x 10(-17) cm(2) molecule(-1). The shape of the band varies significantly from one radical to the next for the series of aromatic precursors investigated. The nature and yields of hydroxylated ring-retaining oxidation products, identified in previous studies of the OH-initiated oxidation of aromatic hydrocarbons, and the results of theoretical density functional theory (DFT) calculations indicate that one or more possible isomers of the various OH-adducts may contribute to the observed spectra. Isomers where the OH-group is ortho- (or both ortho- and ipso-) to a substituent methyl-group are likely to be the most abundant but other isomers may also be formed to a significant extent. Nonetheless, the present study provides absorption spectra of the adduct radicals formed from the gas phase addition of OH to the aromatic hydrocarbons considered, near room temperature and I atm pressure. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a combined quantitative low-energy electron diffraction (LEED) and density-functional theory (DFT) study of the chiral Cu{531} surface. The surface shows large inward relaxations with respect to the bulk interlayer distance of the first two layers and a large expansion of the distance between the fourth and fifth layers. (The latter is the first layer having the same coordination as the Cu atoms in the bulk.) Additional calculations have been performed to study the likelihood of faceting by comparing surface energies of possible facet terminations. No overall significant reduction in energy with respect to planar {531} could be found for any of the tested combinations of facets, which is in agreement with the experimental findings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The adsorption of alanine on Cu {110} was studied by a combination of near edge X-ray absorption fine structure (NEXAFS) spectroscopy, X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT). Large chemical shifts in the C 1s, N 1s, and O 1s XP spectra were found between the alanine multilayer and the chemisorbed and pseudo-(3 x 2) alaninate layers. From C, N, and O K-shell NEXAFS spectra the tilt angles of the carboxylate group (approximate to 26 degrees in plane with respect to [1 (1) over bar0] and approximate to 45 degrees out of plane) and the C-N bond angle with respect to [1 (1) over bar0] could be determined for the pseudo-(3 x 2) overlayer. Using this information three adsorption geometries could be eliminated from five p(3 x 2) structures which lead to almost identical heats of adsorption in the DFT calculations between 1.40 and 1.47 eV/molecule. Due to the small energy difference between the remaining two structures it is not unlikely that these coexist on the surface at room temperature. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reaction of [M(NCCH3)(4)][PF6] (M = Ag, Cu) with the S2P2Me4 ligand in dichloromethane solution led to substitution of all the nitrile ligands by two molecules of the sulfur ligand, affording the new species [Ag(S2P2Me4)(2)][PF6] (1) and [Cu(S2P2Me4)(2)][PF6] (2). The structures of these complexes were determined by single crystal X-ray diffraction. showing the expected tetrahedral coordination around each metal. Density functional theory (DFT) calculations confirmed the different geometries and energies of the free and coordinated ligand, and provided a very good reproduction of the experimental structures, both for Ag and Cu. The lengths of the S=P bonds are barely affected by coordination, indicating that the pi bond is not important in binding to the metal. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structures of intermediates formed in propylene polymerisation using neutral salicyladiminato palladium(II) and nickel(II) complexes as catalysts have been investigated using density functional theory. Calculations show that all low energy intermediates contain agostic interactions either between the metal and a hydrogen from the added propylene forming four- or five-membered chelate rings, or, when a phenyl ring is present, between the metal and an aromatic C-C bond. The agostic interactions with the metal are concomitant with changes in ligand dimensions and electronic properties. In particular when a metal to hydrogen bond is formed, there is a lengthening of the C-H bond. Significant differences are found for the agostic interactions with palladium and nickel in that for Pd there is a clear preference for specific intermediates but for Ni there are several different structures with similar energies which are likely to lead to a greater variety of products on further polymerisation. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A nickel catalyst was modeled with ligand L-2, [ NH = CH-CH = CH-O](-), which should have potential use as a syndiotactic polyolefin catalyst, and the reaction mechanism was studied by theoretical calculations using the density functional method at the B3LYP/ LANL2MB level. The mechanism involves the formation of the intermediate [(NiLMe)-Me-2](+), in which the metal occuples a T-shaped geometry. - This intermediate has two possible structures with the methyl group trans either to the oxygen or to the nitrogen atom of L-2. The results show that both structures can lead to the desired product via similar reaction paths, A and B. Thus, the polymerization could be considered as taking place either with the alkyl group occupying the position trans to the Ni-O or trans to the Ni-N bond in the catalyst. The polymerization process thus favors the catalysis of syndiotactic polyolefins. The syndiotactic synthesis effects could also be enhanced by variations in the ligand substituents. From energy considerations, we can conclude that it is more favorable for the methyl group to occupy the trans-O position to form a complex than to occupy the trans-N position. From bond length considerations, it is also more favoured for ethene to occupy the trans-O position than to occupy the trans-N position.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inelastic neutron scattering spectroscopy has been used to observe and characterise hydrogen on the carbon component of a Pt/C catalyst. INS provides the complete vibration spectrum of coronene, regarded as a molecular model of a graphite layer. The vibrational modes are assigned with the aid of ab initio density functional theory calculations and the INS spectra by the a-CLIMAX program. A spectrum for which the H modes of coronene have been computationally suppressed, a carbon-only coronene spectrum, is a better representation of the spectrum of a graphite layer than is coronene itself. Dihydrogen dosing of a Pt/C catalyst caused amplification of the surface modes of carbon, an effect described as H riding on carbon. From the enhancement of the low energy carbon modes (100-600 cm(-1)) it is concluded that spillover hydrogen becomes attached to dangling bonds at the edges of graphitic regions of the carbon support. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structure of the chiral kinked Pt{531} surface has been determined by low-energy electron diffraction intensity-versus-energy (LEED-IV) analysis and density functional theory (DFT). Large contractions and expansions of the vertical interlayer distances with respect to the bulk-terminated surface geometry were found for the first six layers (LEED: d(12) = 0.44 angstrom, d(23) = 0.69 angstrom, d(34) = 0.49 angstrom, d(45) = 0.95 angstrom, d(56) = 0.56 angstrom; DFT: d(12) = 0.51 angstrom, d(23) = 0.55 angstrom, d(34) = 0.74 angstrom, d(45) = 0.78 angstrom, d(56) = 0.63 angstrom; d(bulk) = 0.66 angstrom). Energy-dependent cancellations of LEED spots over unusually large energy ranges, up to 100 eV, can be explained by surface roughness and reproduced by applying a model involving 0.25 ML of vacancies and adatoms in the scattering calculations. The agreement between the results from LEED and DFT is not as good as in other cases, which could be due to this roughness of the real surface.