41 resultados para cost saving production technologies
Resumo:
This article is a commentary on several research studies conducted on the prospects for aerobic rice production systems that aim at reducing the demand for irrigation water which in certain major rice producing areas of the world is becoming increasingly scarce. The research studies considered, as reported in published articles mainly under the aegis of the International Rice Research Institute (IRRI), have a narrow scope in that they test only 3 or 4 rice varieties under different soil moisture treatments obtained with controlled irrigation, but with other agronomic factors of production held as constant. Consequently, these studies do not permit an assessment of the interactions among agronomic factors that will be of critical significance to the performance of any production system. Varying the production factor of "water" will seriously affect also the levels of the other factors required to optimise the performance of a production system. The major weakness in the studies analysed in this article originates from not taking account of the interactions between experimental and non-experimental factors involved in the comparisons between different production systems. This applies to the experimental field design used for the research studies as well as to the subsequent statistical analyses of the results. The existence of such interactions is a serious complicating element that makes meaningful comparisons between different crop production systems difficult. Consequently, the data and conclusions drawn from such research readily become biased towards proposing standardised solutions for possible introduction to farmers through a linear technology transfer process. Yet, the variability and diversity encountered in the real-world farming environment demand more flexible solutions and approaches in the dissemination of knowledge-intensive production practices through "experiential learning" types of processes, such as those employed by farmer field schools. This article illustrates, based on expertise of the 'system of rice intensification' (SRI), that several cost-effective and environment-friendly agronomic solutions to reduce the demand for irrigation water, other than the asserted need for the introduction of new cultivars, are feasible. Further, these agronomic Solutions can offer immediate benefits of reduced water requirements and increased net returns that Would be readily accessible to a wide range of rice producers, particularly the resource poor smallholders. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
1. The production of food for human consumption has led to an historical and global conflict with terrestrial carnivores, which in turn has resulted in the extinction or extirpation of many species, although some have benefited. At present, carnivores affect food production by: (i) killing human producers; killing and/or eating (ii) fish/shellfish; (iii) game/wildfowl; (iv) livestock; (v) damaging crops; (vi) transmitting diseases; and (vii) through trophic interactions with other species in agricultural landscapes. Conversely, carnivores can themselves be a source of dietary protein (bushmeat). 2. Globally, the major areas of conflict are predation on livestock and the transmission of rabies. At a broad scale, livestock predation is a customary problem where predators are present and has been quantified for a broad range of carnivore species, although the veracity of these estimates is equivocal. Typically, but not always, losses are small relative to the numbers held, but can be a significant proportion of total livestock mortality. Losses experienced by producers are often highly variable, indicating that factors such as husbandry practices and predator behaviour may significantly affect the relative vulnerability of properties in the wider landscape. Within livestock herds, juvenile animals are particularly vulnerable. 3. Proactive and reactive culling are widely practised as a means to limit predation on livestock and game. Historic changes in species' distributions and abundance illustrate that culling programmes can be very effective at reducing predator density, although such substantive impacts are generally considered undesirable for native predators. However, despite their prevalence, the effectiveness, efficiency and the benefit:cost ratio of culling programmes have been poorly studied. 4. A wide range of non-lethal methods to limit predation has been studied. However, many of these have their practical limitations and are unlikely to be widely applicable. 5. Lethal approaches are likely to dominate the management of terrestrial carnivores for the foreseeable future, but animal welfare considerations are increasingly likely to influence management strategies. The adoption of non-lethal approaches will depend upon proof of their effectiveness and the willingness of stakeholders to implement them, and, in some cases, appropriate licensing and legislation. 6. Overall, it is apparent that we still understand relatively little about the importance of factors affecting predation on livestock and how to manage this conflict effectively. We consider the following avenues of research to be essential: (i) quantified assessments of the loss of viable livestock; (ii) landscape-level studies of contiguous properties to quantify losses associated with variables such as different husbandry practices; (iii) replicated experimental manipulations to identify the relative benefit of particular management practices, incorporating (iv) techniques to identify individual predators killing stock; and (v) economic analyses of different management approaches to quantify optimal production strategies.
Resumo:
Wireless sensor networks (WSNs) have been widely used in pervasive systems such as intelligent buildings. As a vital factor of product cost, energy consuming in WSN has been focused upon, but only via energy harvesting can the problem be overcome radically. This article presents a new approach to harvesting electromagnetic energy for WSN from useless radio frequency (RF) signals transmitted in WSN, with a quantitative analysis showing its feasibility.
Resumo:
We present a novel way of interacting with an immersive virtual environment which involves inexpensive motion-capture using the Wii Remote®. A software framework is also presented to visualize and share this information across two remote CAVETM-like environments. The resulting applications can be used to assist rehabilitation by sending motion information across remote sites. The application’s software and hardware components are scalable enough to be used on desktop computer when home-based rehabilitation is preferred.
Resumo:
There is a growing concern in reducing greenhouse gas emissions all over the world. The U.K. has set 34% target reduction of emission before 2020 and 80% before 2050 compared to 1990 recently in Post Copenhagen Report on Climate Change. In practise, Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) tools have been introduced to construction industry in order to achieve this such as. However, there is clear a disconnection between costs and environmental impacts over the life cycle of a built asset when using these two tools. Besides, the changes in Information and Communication Technologies (ICTs) lead to a change in the way information is represented, in particular, information is being fed more easily and distributed more quickly to different stakeholders by the use of tool such as the Building Information Modelling (BIM), with little consideration on incorporating LCC and LCA and their maximised usage within the BIM environment. The aim of this paper is to propose the development of a model-based LCC and LCA tool in order to provide sustainable building design decisions for clients, architects and quantity surveyors, by then an optimal investment decision can be made by studying the trade-off between costs and environmental impacts. An application framework is also proposed finally as the future work that shows how the proposed model can be incorporated into the BIM environment in practise.
Resumo:
Studies have shown that natural ultraviolet (UV) radiation increases secondary products such as phenolics but can significantly inhibit biomass accumulation in lettuce plants. In the work presented here, the effect of UV radiation on phenolic concentration and biomass accumulation was assessed in relation to photosynthetic performance in red and green lettuce types. Lettuce plants in polythene clad tunnels were exposed to either ambient (UV transparent film) or UV-free conditions (UV blocking film). The study tested whether growth reduction in lettuce plants exposed to natural UV radiation is because of inhibition of photosynthesis by direct damage to the photosynthetic apparatus or by internal shading by anthocyanins. Ambient levels of UV radiation did not limit the efficiency of photosynthesis suggesting that phenolic compounds may effectively protect the photosynthetic apparatus. Growth inhibition does, however, occur in red lettuce and could be explained by the high metabolic cost of phenolic compounds for UV protection. From a commercial perspective, UV transparent and UV blocking films offer opportunities because, in combination, they could increase plant quality as well as productivity. Growing plants continuously under a UV blocking film, and then 6 days before the final harvest transferring them to a UV transparent film, showed that high yields and high phytochemical content can be achieved complementarily.
Resumo:
International Perspective The development of GM technology continues to expand into increasing numbers of crops and conferred traits. Inevitably, the focus remains on the major field crops of soybean, maize, cotton, oilseed rape and potato with introduced genes conferring herbicide tolerance and/or pest resistance. Although there are comparatively few GM crops that have been commercialised to date, GM versions of 172 plant species have been grown in field trials in 31 countries. European Crops with Containment Issues Of the 20 main crops in the EU there are four for which GM varieties are commercially available (cotton, maize for animal feed and forage, and oilseed rape). Fourteen have GM varieties in field trials (bread wheat, barley, durum wheat, sunflower, oats, potatoes, sugar beet, grapes, alfalfa, olives, field peas, clover, apples, rice) and two have GM varieties still in development (rye, triticale). Many of these crops have hybridisation potential with wild and weedy relatives in the European flora (bread wheat, barley, oilseed rape, durum wheat, oats, sugar beet and grapes), with escapes (sunflower); and all have potential to cross-pollinate fields non-GM crops. Several fodder crops, forestry trees, grasses and ornamentals have varieties in field trials and these too may hybridise with wild relatives in the European flora (alfalfa, clover, lupin, silver birch, sweet chestnut, Norway spruce, Scots pine, poplar, elm, Agrostis canina, A. stolonifera, Festuca arundinacea, Lolium perenne, L. multiflorum, statice and rose). All these crops will require containment strategies to be in place if it is deemed necessary to prevent transgene movement to wild relatives and non-GM crops. Current Containment Strategies A wide variety of GM containment strategies are currently under development, with a particular focus on crops expressing pharmaceutical products. Physical containment in greenhouses and growth rooms is suitable for some crops (tomatoes, lettuce) and for research purposes. Aquatic bioreactors of some non-crop species (algae, moss, and duckweed) expressing pharmaceutical products have been adopted by some biotechnology companies. There are obvious limitations of the scale of physical containment strategies, addressed in part by the development of large underground facilities in the US and Canada. The additional resources required to grow plants underground incurs high costs that in the long term may negate any advantage of GM for commercial productioNatural genetic containment has been adopted by some companies through the selection of either non-food/feed crops (algae, moss, duckweed) as bio-pharming platforms or organisms with no wild relatives present in the local flora (safflower in the Americas). The expression of pharmaceutical products in leafy crops (tobacco, alfalfa, lettuce, spinach) enables growth and harvesting prior to and in the absence of flowering. Transgenically controlled containment strategies range in their approach and degree of development. Plastid transformation is relatively well developed but is not suited to all traits or crops and does not offer complete containment. Male sterility is well developed across a range of plants but has limitations in its application for fruit/seed bearing crops. It has been adopted in some commercial lines of oilseed rape despite not preventing escape via seed. Conditional lethality can be used to prevent flowering or seed development following the application of a chemical inducer, but requires 100% induction of the trait and sufficient application of the inducer to all plants. Equally, inducible expression of the GM trait requires equally stringent application conditions. Such a method will contain the trait but will allow the escape of a non-functioning transgene. Seed lethality (‘terminator’ technology) is the only strategy at present that prevents transgene movement via seed, but due to public opinion against the concept it has never been trialled in the field and is no longer under commercial development. Methods to control flowering and fruit development such as apomixis and cleistogamy will prevent crop-to-wild and wild-to-crop pollination, but in nature both of these strategies are complex and leaky. None of the genes controlling these traits have as yet been identified or characterised and therefore have not been transgenically introduced into crop species. Neither of these strategies will prevent transgene escape via seed and any feral apomicts that form are arguably more likely to become invasives. Transgene mitigation reduces the fitness of initial hybrids and so prevents stable introgression of transgenes into wild populations. However, it does not prevent initial formation of hybrids or spread to non-GM crops. Such strategies could be detrimental to wild populations and have not yet been demonstrated in the field. Similarly, auxotrophy prevents persistence of escapes and hybrids containing the transgene in an uncontrolled environment, but does not prevent transgene movement from the crop. Recoverable block of function, intein trans-splicing and transgene excision all use recombinases to modify the transgene in planta either to induce expression or to prevent it. All require optimal conditions and 100% accuracy to function and none have been tested under field conditions as yet. All will contain the GM trait but all will allow some non-native DNA to escape to wild populations or to non-GM crops. There are particular issues with GM trees and grasses as both are largely undomesticated, wind pollinated and perennial, thus providing many opportunities for hybridisation. Some species of both trees and grass are also capable of vegetative propagation without sexual reproduction. There are additional concerns regarding the weedy nature of many grass species and the long-term stability of GM traits across the life span of trees. Transgene stability and conferred sterility are difficult to trial in trees as most field trials are only conducted during the juvenile phase of tree growth. Bio-pharming of pharmaceutical and industrial compounds in plants Bio-pharming of pharmaceutical and industrial compounds in plants offers an attractive alternative to mammalian-based pharmaceutical and vaccine production. Several plantbased products are already on the market (Prodigene’s avidin, β-glucuronidase, trypsin generated in GM maize; Ventria’s lactoferrin generated in GM rice). Numerous products are in clinical trials (collagen, antibodies against tooth decay and non-Hodgkin’s lymphoma from tobacco; human gastric lipase, therapeutic enzymes, dietary supplements from maize; Hepatitis B and Norwalk virus vaccines from potato; rabies vaccines from spinach; dietary supplements from Arabidopsis). The initial production platforms for plant-based pharmaceuticals were selected from conventional crops, largely because an established knowledge base already existed. Tobacco and other leafy crops such as alfalfa, lettuce and spinach are widely used as leaves can be harvested and no flowering is required. Many of these crops can be grown in contained greenhouses. Potato is also widely used and can also be grown in contained conditions. The introduction of morphological markers may aid in the recognition and traceability of crops expressing pharmaceutical products. Plant cells or plant parts may be transformed and maintained in culture to produce recombinant products in a contained environment. Plant cells in suspension or in vitro, roots, root cells and guttation fluid from leaves may be engineered to secrete proteins that may be harvested in a continuous, non-destructive manner. Most strategies in this category remain developmental and have not been commercially adopted at present. Transient expression produces GM compounds from non-GM plants via the utilisation of bacterial or viral vectors. These vectors introduce the trait into specific tissues of whole plants or plant parts, but do not insert them into the heritable genome. There are some limitations of scale and the field release of such crops will require the regulation of the vector. However, several companies have several transiently expressed products in clinical and pre-clinical trials from crops raised in physical containment.
Resumo:
This study was designed to determine the response of in vitro fermentation parameters to incremental levels of polyethylene glycol (PEG) when tanniniferous tree fruits (Dichrostachys cinerea, Acacia erioloba, A. erubiscens, A. nilotica and Piliostigma thonningii) were fermented using the Reading Pressure Technique. The trivalent ytterbium precipitable phenolics content of fruit substrates ranged from 175 g/kg DM in A. erubiscens to 607 g/kg DM in A. nilotica, while the soluble condensed tannin content ranged from 0.09 AU550nm/40mg in A. erioloba to 0.52 AU550nm/40 mg in D. cinerea. The ADF was highest in P. thonningii fruits (402 g/kg DM) and lowest in A. nilotica fruits (165 g/kg DM). Increasing the level of PEG caused an exponential rise to a maximum (asymptotic) for cumulative gas production, rate of gas production and nitrogen degradability in all substrates except P. thonningii fruits. Dry matter degradability for fruits containing higher levels of soluble condensed tannins (D. cinerea and P. thonningii), showed little response to incremental levels of PEG after incubation for 24 h. The minimum levels of PEG required to maximize in vitro fermentation of tree fruits was found to be 200 mg PEG/g DM of sample for all tree species except A. erubiscens fruits, which required 100 mg PEG/g DM sample. The study provides evidence that PEG levels lower than 1 g/g DM sample can be used for in vitro tannin bioassays to reduce the cost of evaluating non-conventional tanniniferous feedstuffs used in developing countries in the tropics and subtopics. The use of in vitro nitrogen degradability in place of the favoured dry matter degradability improved the accuracy of PEG as a diagnostic tool for tannins in in vitro fermentation systems.
Resumo:
Over the last few years, load growth, increases in intermittent generation, declining technology costs and increasing recognition of the importance of customer behaviour in energy markets have brought about a change in the focus of Demand Response (DR) in Europe. The long standing programmes involving large industries, through interruptible tariffs and time of day pricing, have been increasingly complemented by programmes aimed at commercial and residential customer groups. Developments in DR vary substantially across Europe reflecting national conditions and triggered by different sets of policies, programmes and implementation schemes. This paper examines experiences within European countries as well as at European Union (EU) level, with the aim of understanding which factors have facilitated or impeded advances in DR. It describes initiatives, studies and policies of various European countries, with in-depth case studies of the UK, Italy and Spain. It is concluded that while business programmes, technical and economic potentials vary across Europe, there are common reasons as to why coordinated DR policies have been slow to emerge. This is because of the limited knowledge on DR energy saving capacities; high cost estimates for DR technologies and infrastructures; and policies focused on creating the conditions for liberalising the EU energy markets.
Resumo:
The governance of water resources is prominent in both water policy agendas and academic scholarship. Political ecologists have made important advances in reconceptualising the relationship between water and society. Yet, while they have stressed both the scalar dimensions, and the politicised nature, of water governance, analyses of its scalar politics are relatively nascent. In this paper, we consider how the increased demand for water resources by the growing mining industry in Peru reconfigures and rescales water governance. In Peru, the mining industry’s thirst for water draws in, and reshapes, social relations, technologies, institutions and discourses that operate over varying spatial and temporal scales. We develop the concept of waterscape to examine these multiple ways in water is co-produced through mining, and become embedded in changing modes and structures of water governance, often beyond the watershed scale. We argue that an examination of waterscapes avoids the limitations of thinking about water in purely material terms, structuring analysis of water issues according to traditional spatial scales and institutional hierarchies, and taking these scales and structures for granted.
Resumo:
Almost all the electricity currently produced in the UK is generated as part of a centralised power system designed around large fossil fuel or nuclear power stations. This power system is robust and reliable but the efficiency of power generation is low, resulting in large quantities of waste heat. The principal aim of this paper is to investigate an alternative concept: the energy production by small scale generators in close proximity to the energy users, integrated into microgrids. Microgrids—de-centralised electricity generation combined with on-site production of heat—bear the promise of substantial environmental benefits, brought about by a higher energy efficiency and by facilitating the integration of renewable sources such as photovoltaic arrays or wind turbines. By virtue of good match between generation and load, microgrids have a low impact on the electricity network, despite a potentially significant level of generation by intermittent energy sources. The paper discusses the technical and economic issues associated with this novel concept, giving an overview of the generator technologies, the current regulatory framework in the UK, and the barriers that have to be overcome if microgrids are to make a major contribution to the UK energy supply. The focus of this study is a microgrid of domestic users powered by small Combined Heat and Power generators and photovoltaics. Focusing on the energy balance between the generation and load, it is found that the optimum combination of the generators in the microgrid- consisting of around 1.4 kWp PV array per household and 45% household ownership of micro-CHP generators- will maintain energy balance on a yearly basis if supplemented by energy storage of 2.7 kWh per household. We find that there is no fundamental technological reason why microgrids cannot contribute an appreciable part of the UK energy demand. Indeed, an estimate of cost indicates that the microgrids considered in this study would supply electricity at a cost comparable with the present electricity supply if the current support mechanisms for photovoltaics were maintained. Combining photovoltaics and micro-CHP and a small battery requirement gives a microgrid that is independent of the national electricity network. In the short term, this has particular benefits for remote communities but more wide-ranging possibilities open up in the medium to long term. Microgrids could meet the need to replace current generation nuclear and coal fired power stations, greatly reducing the demand on the transmission and distribution network.
Resumo:
Housing in the UK accounts for 30.5% of all energy consumed and is responsible for 25% of all carbon emissions. The UK Government’s Code for Sustainable Homes requires all new homes to be zero carbon by 2016. The development and widespread diffusion of low and zero carbon (LZC) technologies is recognised as being a key solution for housing developers to deliver against this zero-carbon agenda. The innovation challenge to design and incorporate these technologies into housing developers’ standard design and production templates will usher in significant technical and commercial risks. In this paper we report early results from an ongoing Engineering and Physical Sciences Research Council project looking at the innovation logic and trajectory of LZC technologies in new housing. The principal theoretical lens for the research is the socio-technical network approach which considers actors’ interests and interpretative flexibilities of technologies and how they negotiate and reproduce ‘acting spaces’ to shape, in this case, the selection and adoption of LZC technologies. The initial findings are revealing the form and operation of the technology networks around new housing developments as being very complex, involving a range of actors and viewpoints that vary for each housing development.
Resumo:
A better understanding of the systemic processes by which innovation occurs is useful, both conceptually and to inform policymaking in support of innovation in more sustainable technologies. This paper analyses current innovation systems in the UK for a range of new and renewable energy technologies, and generates policy recommendations for improving the effectiveness of these innovation systems. Although incentives are in place in the UK to encourage innovation in these technologies, system failures—or ‘gaps’—are identified in moving technologies along the innovation chain, preventing their successful commercialisation. Sustained investment will be needed for these technologies to achieve their potential. It is argued that a stable and consistent policy framework is required to help create the conditions for this. In particular, such a framework should be aimed at improving risk/reward ratios for demonstration and pre-commercial stage technologies. This would enhance positive expectations, stimulate learning effects leading to cost reductions, and increase the likelihood of successful commercialisation.
Resumo:
The bifidobacterial β-galactosidase (BbgIV) was produced in E. coli DH5α at 37 and 30 °C in a 5 L bioreactor under varied conditions of dissolved oxygen (dO2) and pH. The yield of soluble BbgIV was significantly (P < 0.05) increased once the dO2 dropped to 0–2% and remained at such low values during the exponential phase. Limited dO2 significantly (P < 0.05) increased the plasmid copy number and decreased the cells growth rate. Consequently, the BbgIV yield increased to its maximum (71–75 mg per g dry cell weight), which represented 20–25% of the total soluble proteins in the cells. In addition, the specific activity and catalytic efficiency of BbgIV were significantly (P < 0.05) enhanced under limited dO2 conditions. This was concomitant with a change in the enzyme secondary structure, suggesting a link between the enzyme structure and function. The knowledge generated from this work is very important for producing BbgIV as a biocatalyst for the development of a cost-effective process for the synthesis of prebiotic galactooligosaccharides from lactose.
Resumo:
Proton exchange membranes (PEM’s) are currently under investigation for membrane water electrolysis (PEMWE) to deliver efficient production of the high purity hydrogen needed to supply emerging clean-energy technologies such as hydrogen fuel cells. The microblock aromatic ionomer described in this work achieves high mechanical strength in an aqueous environment as a result of its designed, biphasic morphology and displays many of the qualities required in a PEM. The new ionomer membrane thus shows good proton conductivity (63 mS cm−1 at 80 °C and 100% RH), while retaining mechanical integrity under high temperature, hydrated conditions. Testing in electrolysis has shown good energy efficiency (1.67 V at 1 A cm−2 and 80 °C, corresponding to 4 kWh/Nm3 of H2), making this ionomer a potential candidate for commercial application in PEMWE.