42 resultados para contaminated soils


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Remediation of soil pollution is one of the many current environmental challenges. Anthropogenic activity has resulted in the contamination of extended areas of land, the remediation of which is both invasive and expensive by conventional means. Phytoextraction of heavy metals from contaminated soils has the prospect of being a more economic in situ alternative. In addition, phytoextraction targets ecotoxicologically the most relevant soil fraction of these metals, i.e. the bioavailable fraction. Greenhouse experiments were carried out to evaluate the potential of four high biomass crop species in their potential for phytoextraction of heavy metals, with or without with the use of soil amendments (EDTA or EDDS). A calcareous dredged sediment derived surface soil, with high organic matter and clay content and moderate levels of heavy metal pollution, was used in the experiments. No growth depression was observed in EDTA or EDDS treated pots in comparison to untreated controls. Metal accumulation was considered to be low for phytoextraction purposes, despite the use of chelating agents. The low observed shoot concentrations of heavy metals were attributed to the low phytoavailability of heavy metals in this particular soil substrate. The mobilising effects induced by EDTA in the soil were found to be too long-lived for application as a soil amendment in phytoextraction. Although EDDS was found to be more biodegradable, higher effect half lives were observed than reported in literature or observed in previous experiments. These findings caution against the use of any amendment, biodegradable or otherwise, without proper investigation of its effects and the longevity thereof. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bone meal amendments are being considered as a remediation method for metal-contaminated wastes. In various forms (biogenic, geogenic or synthetic), apatite, the principal mineral constituent of bone, has shown promise as an amendment to remediate metal-contaminated soils via the formation of insoluble phosphates of Pb and possibly other metals. The efficacy of commercially available bovine bone meal in this role was investigated in a field trial at Nenthead, Cumbria with a mine waste derived soil contaminated with Zn, Pb and Cd. Two 5 m(2) plots were set up: the first as a control and the second, a treatment plot where the soil was thoroughly mixed with bone meal to a depth of 50 cm at a soil to amendment ratio of 25:1 by weight. An array of soil solution samplers (Rhizon SMS (TM)) were installed in both plots and the soil pore water was collected and analysed for Ca, Cd, Zn and Pb regularly over a period of 2 a. Concurrently with the field trial, a laboratory trial with 800 mm high and 100 mm wide leaching Columns Was conducted using identical samplers and with soil from the held site. A substantial release of Zn, Pb, Cd and Ca was observed associated with the bone meal treatment. This release was transient in the case of the leaching columns, and showed seasonal variation in the case of the field trial. It is proposed that this effect resulted from metal complexation with organic acids released during breakdown of the bone meal organic fraction and was facilitated by the relatively high soil pH of 7.6-8.0. Even after this transient release effect had subsided or when incinerated bone meal was substituted in order to eliminate the organic fraction, no detectable decrease in dissolved metals was observed and no P was detected in solution, in contrast with an earlier small column laboratory study. It is concluded that due to the relative insolubility of apatite at above-neutral pH, the rate of supply of phosphate to soil solution was insufficient to result in significant precipitation of metal phosphates and that this may limit the effectiveness of the method to more acidic soils. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Organisation for Economic Co-operation and Development (OECD) Terrestrial plant test is often used for the ecological risk assessment of contaminated land. However, its origins in plant protection product testing mean that the species recommended in the OECD guidelines are unlikely to occur on contaminated land. Six alternative species were tested on contaminated soils from a former Zn smelter and a metal fragmentizer with elevated concentrations of Cd, Cu, Pb, and Zn. The response of the alternative species was compared to two species recommended by the OECD; Lolium perenne (perennial ryegrass) and Trifolium pratense (red clover). Urtica dioica (stinging nettle) and Poa annua (annual meadow-grass) had low emergence rates in the control soil so may be considered unsuitable. Festuca rubra (chewings fescue), Holcus lanatus (Yorkshire fog), Senecio vulgaris (common groundsel), and Verbascum thapsus (great mullein) offer good alternatives to the OECD species. In particular, H. lanatus and S. vulgaris were more sensitive to the soils with moderate concentrations of Cd, Cu, Pb, and Zn than the OECD species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Earthworms inhabiting arsenic contaminated soils may accelerate the leaching of As into surface and ground waters. We carried out three experiments to determine the impact of passage of As contaminated soil (1150 mgAs kg−1) through the gut of the earthworm Lumbricus terrestris on the mobility and speciation of As and the effects of earthworm mucus on As mobility. The concentration of water soluble As in soil increased (from 1.6 to 18 mg kg−1) after passage through the earthworm gut. Casts that were aged for 56 days still contained more than nine times greater water soluble As than bulk earthworm inhabited soil. Changes were due to increases in As(V) mobility, with no change in As(III). Dilute mucus extracts reduced As mobility through the formation of As-amino acid-iron oxide ternary complexes. More concentrated mucus extracts increased As mobility. These changes, together with those due to the passage through the gut, were due to increases in pH, phosphate and soluble organic carbon. The mobilisation of As from contaminated soils in the environment by cast production and mucus secretion may allow for accelerated leaching or uptake into biota which is underestimated when bulk soil samples are analysed and the influence of soil biota ignored.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Accurate monitoring of degradation levels in soils is essential in order to understand and achieve complete degradation of petroleum hydrocarbons in contaminated soils. We aimed to develop the use of multivariate methods for the monitoring of biodegradation of diesel in soils and to determine if diesel contaminated soils could be remediated to a chemical composition similar to that of an uncontaminated soil. An incubation experiment was set up with three contrasting soil types. Each soil was exposed to diesel at varying stages of degradation and then analysed for key hydrocarbons throughout 161 days of incubation. Hydrocarbon distributions were analysed by Principal Coordinate Analysis and similar samples grouped by cluster analysis. Variation and differences between samples were determined using permutational multivariate analysis of variance. It was found that all soils followed trajectories approaching the chemical composition of the unpolluted soil. Some contaminated soils were no longer significantly different to that of uncontaminated soil after 161 days of incubation. The use of cluster analysis allows the assignment of a percentage chemical similarity of a diesel contaminated soil to an uncontaminated soil sample. This will aid in the monitoring of hydrocarbon contaminated sites and the establishment of potential endpoints for successful remediation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An understanding of the primary pathways of plant uptake of organic pollutants is important to enable the risks from crops grown on contaminated soils to be assessed. A series of experiments were undertaken to quantify the importance of the pathways of contamination and the Subsequent transport within the plant using white clover plants grown in solution culture. Root uptake was primarily an absorption process, but a component of the contamination was a result of the transpiration flux to the shoot for higher Solubility compounds. The root contamination can be easily predicted using a simple relationship with K-OW, although if a composition model was used based on lipid content, a significant under prediction of the contamination was observed. Shoot uptake was driven by the transpiration stream flux which was related to the solubility of the individual PAH rather than the K-OW. However, the experiment was over a short duration, 6 days, and models based on K-OW may be better for crops grown in the field where the vegetation will approach equilibrium and transpiration cannot easily be measured, A significant fraction of the shoot contamination resulted from aerial deposition derived from volatilized PAH. This pathway was more significant for compounds approaching log K-OA > 9 and log K-AW < -3. The shoot uptake pathways need further investigation to enable them to be modeled separately, There was no evidence of significant systemic transport of the PAR so transfer outside the transpiration stream is likely to be limited.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemical pollution of the environment has become a major source of concern. In particular, many studies have investigated the impact of pollution on biota in the environment. Studies on metalliferous contaminated mine spoil wastes have shown that some soil organisms have the capability to become resistant to metal/metalloid toxicity. Earthworms are known to inhabit arsenic-rich metalliferous soils and, due to their intimate contact with the soil, in both the solid and aqueous phases, are likely to accumulate contaminants present in mine spoil. Earthworms that inhabit metalliferous contaminated soils must have developed mechanisms of resistance to the toxins found in these soils. The mechanisms of resistance are not fully understood; they may involve physiological adaptation (acclimation) or be genetic. This review discusses the relationships between earthworms and arsenic-rich mine spoil wastes, looking critically at resistance and possible mechanisms of resistance, in relation to soil edaphic factors and possible trophic transfer routes. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phytoextraction, the use of plants to extract heavy metals from contaminated soils, could be an interesting alternative to conventional remediation technologies. However, calcareous soils with relatively high total metal contents are difficult to phytoremediate due to low soluble metal concentrations. Soil amendments such as ethylene diaminetetraacetate (EDTA) have been suggested to increase heavy metal bioavailability and uptake in aboveground plant parts. Strong persistence of EDTA and risks of leaching of potentially toxic metals and essential nutrients have led to research on easily biodegradable soilamendments such as citric acid. In our research, EDTA is regarded as a scientific benchmark with which degradable alternatives are compared for enhanced phytoextraction purposes. The effects of increasing doses of EDTA (0.1, 1, 10 mmol kg(-1) dry soil) and citric acid (0.01, 0.05,0.25,0.442, 0.5 mol kg(-1) dry soil) on bioavailable fractions of Cu, Zn, Cd, and Pb were assessed in one part of our study and results are presented in this article. The evolution of labile soil fractions of heavy metals over time was evaluated using water paste saturation extraction (similar to soluble fraction), extraction with 1 M NH4OAc at pH 7 (similar to exchangeable fraction), and extraction with 0.5 M NH4OAc + 0.5 M HOAc + 0.02 M EDTA atpH 4.65 (similar to potentially bioavailable fraction). Both citric acid and EDTA produced a rapid initial increase in labile heavy metal fractions. Metal mobilization remained constant in time for soils treated with EDTA, but metal fractions was noted for soils treated with citric acid. The half life of heavy metal mobilization by citric acid varied between 1.5 and 5.7 d. In the following article, the effect of heavy metal mobilization on uptake by Helianthus annutis will be presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Earthworms are an essential part of the soil fauna in many global soils, represent a significant proportion of the soil biomass and are regarded as a useful indicator of soil health and quality (Edwards, 2004). They are also often the subject of inoculation programmes during the restoration of degraded lands (Butt, 1999) and the inoculation of earthworms to metal-contaminated soils has been suggested (Dickinson, 2000) largely due to the role earthworms are known to play in soil formation at such sites (Frouz et al., 2007).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study is to test the stabilisation of metals in contaminated soils via the formation of low-solubility metal phosphates. Bone apatite, in the form of commercially available bone meal, was tested as a phosphate source on a mine waste contaminated made-ground with high levels of Pb, Zn and Cd. Triplicate leaching columns were set up at bone meal to soil ratios of 1:25 and 1:10, in addition to unamended controls, and were run for 18 months. The columns were irrigated daily with a synthetic rain solution at pH of 2, 3, and 4.4. After 100 days, the leachate Pb, Zn and Cd concentrations of all amended columns were significantly reduced. For 1:10 treatments, release of these metals was suppressed throughout the trial. For 1:25 treatments, Zn and Cd concentrations in the leachates began to increase after 300 days. DTPA and water extractions showed that Pb and Cd were more strongly held in the amended soils. This study concludes that the complexity of soil processes and the small quantities of metals sequestered precluded determination of a metal immobilisation mechanism. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examined the species diversity and abundance of Collembola at 32 sampling points along a gradient of metal contamination in a rough grassland site ( Wolverhampton, England), formerly used for the disposal of metal-rich smelting waste. Differences in the concentrations of Cd, Cu, Pb and Zn between the least and most contaminated part of the 35 metre transect were more than one order of magnitude. A gradient of Zn concentrations from 597 to 9080 mug g(-1) dry soil was found. A comparison between field concentrations of the four metals and previous studies on their relative toxicities to Collembola, suggested that Zn is likely to be responsible for any ecotoxicological effects on springtails at this site. Euedaphic ( soil dwelling) Collembola were extracted by placing soil cores into Tullgren funnels and epedaphic ( surface dwelling) species were sampled using pitfall traps. There was no obvious relationship between the total abundance, or a range of commonly used diversity indices, and Zn levels in soils. However, individual species showed considerable differences in abundance. Metal "tolerant'' (e.g., Ceratophysella denticulata) and metal "sensitive'' (e.g., Cryptopygus thermophilus) species could be identified. Epedaphic species appeared to be influenced less by metal contamination than euedaphic species. This difference is probably due to the higher mobility and lower contact with the soil pore water of epedaphic springtails in comparison to euedaphic Collembola. In an experiment exposing the standard test springtail, Folsomia candida, to soils from all 32 sampling points, adult survival and reproduction showed small but significant negative relationships with total Zn concentrations. Nevertheless, juveniles were still produced from eggs laid by females in the most contaminated soils with 9080 mug g(-1) Zn. Folsomia candida is much more sensitive to equivalent concentrations of Zn in the standard OECD soil. Thus, care should be taken in extrapolating the results of laboratory toxicity tests on metals in OECD soil to field soils, in which, the biological availability of contaminants is likely to be lower. Our studies have shown the importance of ecotoxicological effects at the species level. Although there may be no differences in overall abundance, sensitive species that are numerous in contaminated sites, and which may play important roles in decomposition("keystone species'') can be greatly reduced in numbers by pollution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examined the species diversity and abundance of Collembola at 32 sampling points along a gradient of metal contamination in a rough grassland site ( Wolverhampton, England), formerly used for the disposal of metal-rich smelting waste. Differences in the concentrations of Cd, Cu, Pb and Zn between the least and most contaminated part of the 35 metre transect were more than one order of magnitude. A gradient of Zn concentrations from 597 to 9080 mug g(-1) dry soil was found. A comparison between field concentrations of the four metals and previous studies on their relative toxicities to Collembola, suggested that Zn is likely to be responsible for any ecotoxicological effects on springtails at this site. Euedaphic ( soil dwelling) Collembola were extracted by placing soil cores into Tullgren funnels and epedaphic ( surface dwelling) species were sampled using pitfall traps. There was no obvious relationship between the total abundance, or a range of commonly used diversity indices, and Zn levels in soils. However, individual species showed considerable differences in abundance. Metal "tolerant'' (e.g., Ceratophysella denticulata) and metal "sensitive'' (e.g., Cryptopygus thermophilus) species could be identified. Epedaphic species appeared to be influenced less by metal contamination than euedaphic species. This difference is probably due to the higher mobility and lower contact with the soil pore water of epedaphic springtails in comparison to euedaphic Collembola. In an experiment exposing the standard test springtail, Folsomia candida, to soils from all 32 sampling points, adult survival and reproduction showed small but significant negative relationships with total Zn concentrations. Nevertheless, juveniles were still produced from eggs laid by females in the most contaminated soils with 9080 mug g(-1) Zn. Folsomia candida is much more sensitive to equivalent concentrations of Zn in the standard OECD soil. Thus, care should be taken in extrapolating the results of laboratory toxicity tests on metals in OECD soil to field soils, in which, the biological availability of contaminants is likely to be lower. Our studies have shown the importance of ecotoxicological effects at the species level. Although there may be no differences in overall abundance, sensitive species that are numerous in contaminated sites, and which may play important roles in decomposition("keystone species'') can be greatly reduced in numbers by pollution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The introduction of earthworms into soils contaminated with metals and metalloids has been suggested to aid restoration practices. Eisenia veneta (epigeic), Lumbricus terrestris (anecic) and Allolobophora chlorotica (endogeic) earthworms were cultivated in columns containing 900 g soil with 1130, 345, 113 and 131 mg kg1 of As, Cu, Pb and Zn, respectively, for up to 112 days, in parallel with earthworm-free columns. Leachate was produced by pouring water on the soil surface to saturate the soil and generate downflow. Ryegrass was grown on the top of columns to assess metal uptake into biota. Different ecological groups affected metals in the same way by increasing concentrations and free ion activities in leachate, but anecic L. terrestris had the greatest effect by increasing leachate concentrations of As by 267%, Cu by 393%, Pb by 190%, and Zn by 429% compared to earthworm-free columns. Ryegrass grown in earthworm-bearing soil accumulated more metal and the soil microbial community exhibited greater stress. Results are consistent with earthworm enhanced degradation of organic matter leading to release of organically bound elements. The degradation of organic matter also releases organic acids which decrease the soil pH. The earthworms do not appear to carry out a unique process, but increase the rate of a process that is already occurring. The impact of earthworms on metal mobility and availability should therefore be considered when inoculating earthworms into contaminated soils as new pathways to receptors may be created or the flow of metals and metalloids to receptors may be elevated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The soil−air−plant pathway is potentially important in the vegetative accumulation of organic pollutants from contaminated soils. While a number of qualitative frameworks exist for the prediction of plant accumulation of organic chemicals by this pathway, there are few quantitative models that incorporate this pathway. The aim of the present study was to produce a model that included this pathway and could quantify its contribution to the total plant contamination for a range of organic pollutants. A new model was developed from three submodels for the processes controlling plant contamination via this pathway: aerial deposition, soil volatilization, and systemic translocation. Using the combined model, the soil−air−plant pathway was predicted to account for a significant proportion of the total shoot contamination for those compounds with log KOA > 9 and log KAW < −3. For those pollutants with log KOA < 9 and log KAW > −3 there was a higher deposition of pollutant via the soil−air−plant pathway than for those chemicals with log KOA > 9 and log KAW < −3, but this was an insignificant proportion of the total shoot contamination because of the higher mobility of these compounds via the soil−root−shoot pathway. The incorporation of the soil−air−plant pathway into the plant uptake model did not significantly improve the prediction of the contamination of vegetation from polluted soils when compared across a range of studies. This was a result of the high variability between the experimental studies where the bioconcentration factors varied by 2 orders of magnitude at an equivalent log KOA. One potential reason for this is the background air concentration of the pollutants under study. It was found background air concentrations would dominate those from soil volatilization in many situations unless there was a soil hot spot of contamination, i.e., >100 mg kg−1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been suggested that sources of P could be used to remediate metal-contaminated soil. The toxicity of four potential P sources, potassium hydrogen phosphate (PHP), triple superphosphate (TSP), rock phosphate (RP) and raw bone meal (RBM) to Eisenia fetida was determined. The concentration of P that is statistically likely to kill 50% of the population (LC50) for PHP, TSP and RBM was determined in OECD acute toxicity tests. 14 day LC50s expressed as bulk P concentration lay in the range 3319–4272 mg kg−1 for PHP, 3107–3590 mg kg−1 for TSP and 1782–2196 mg kg−1 for RBM (ranges present the 95% confidence intervals). For PHP and TSP mortality was significantly impacted by the electrical conductivity of the treated soils. No consistent relationship existed between mortality and electrical conductivity, soil pH and available (Olsen) P across the PHP, TSP and RBM amendment types. In RP toxicity tests mortality was low and it was not possible to determine a LC50 value. Incineration of bone meal at temperatures between 200 and 300 ◦C, pre-washing the bone meal, co-amendment with 5% green waste compost and delaying introduction of earthworms after bone meal amendments by 21 days or more led to significant reductions in the bone meal toxicity. These results are consistent with the toxicity being associated with the release and/or degradation of a soluble organic component present in raw bone meal. Bone meal can be used as an earthworm-friendly remedial amendment in metal-contaminated soils but initial additions may have a negative effect on any earthworms surviving in the contaminated soil before the organic component in the bone meal degrades in the soil.