24 resultados para constrained fuzzy analytic hierarchy process (AHP)
Resumo:
Abstract. This paper presents the User-Intimate Requirements Hierarchy Resolution Framework (UI-REF) based on earlier work (Badii 1997-2008) to optimise the requirements engineering process particularly to support userintimate interactive systems co-design. The stages of the UI- EF framework for requirements resolution-and-prioritisation are described. UI-REF has been established to ensure that the most-deeply-valued needs of the majority of stakeholders are elicited and ranked, and the root rationale for requirements evolution is trace-able and contextualised so as to help resolve stakeholder conflicts. UI-REF supports the dynamically evolving requirements of the users in the context of digital economy as under-pinned by online service provisioning. Requirements prioritisation in UI-REF is fully resolved while a promotion path for lower priority requirements is delineated so as to ensure that as the requirements evolve so will their resolution and prioritisation.
Resumo:
The complexity of construction projects and the fragmentation of the construction industry undertaking those projects has effectively resulted in linear, uncoordinated and highly variable project processes in the UK construction sector. Research undertaken at the University of Salford resulted in the development of an improved project process, the Process Protocol, which considers the whole lifecycle of a construction project whilst integrating its participants under a common framework. The Process Protocol identifies the various phases of a construction project with particular emphasis on what is described in the manufacturing industry as the ‘fuzzy front end’. The participants in the process are described in terms of the activities that need to be undertaken in order to achieve a successful project and process execution. In addition, the decision-making mechanisms, from a client perspective, are illustrated and the foundations for a learning organization/industry are facilitated within a consistent Process Protocol.
Resumo:
This paper describes the recent developments and improvements made to the variable radius niching technique called Dynamic Niche Clustering (DNC). DNC is fitness sharing based technique that employs a separate population of overlapping fuzzy niches with independent radii which operate in the decoded parameter space, and are maintained alongside the normal GA population. We describe a speedup process that can be applied to the initial generation which greatly reduces the complexity of the initial stages. A split operator is also introduced that is designed to counteract the excessive growth of niches, and it is shown that this improves the overall robustness of the technique. Finally, the effect of local elitism is documented and compared to the performance of the basic DNC technique on a selection of 2D test functions. The paper is concluded with a view to future work to be undertaken on the technique.
Resumo:
Infrared polarization and intensity imagery provide complementary and discriminative information in image understanding and interpretation. In this paper, a novel fusion method is proposed by effectively merging the information with various combination rules. It makes use of both low-frequency and highfrequency images components from support value transform (SVT), and applies fuzzy logic in the combination process. Images (both infrared polarization and intensity images) to be fused are firstly decomposed into low-frequency component images and support value image sequences by the SVT. Then the low-frequency component images are combined using a fuzzy combination rule blending three sub-combination methods of (1) region feature maximum, (2) region feature weighting average, and (3) pixel value maximum; and the support value image sequences are merged using a fuzzy combination rule fusing two sub-combination methods of (1) pixel energy maximum and (2) region feature weighting. With the variables of two newly defined features, i.e. the low-frequency difference feature for low-frequency component images and the support-value difference feature for support value image sequences, trapezoidal membership functions are proposed and developed in tuning the fuzzy fusion process. Finally the fused image is obtained by inverse SVT operations. Experimental results of visual inspection and quantitative evaluation both indicate the superiority of the proposed method to its counterparts in image fusion of infrared polarization and intensity images.
Resumo:
It is widely accepted that some of the most accurate Value-at-Risk (VaR) estimates are based on an appropriately specified GARCH process. But when the forecast horizon is greater than the frequency of the GARCH model, such predictions have typically required time-consuming simulations of the aggregated returns distributions. This paper shows that fast, quasi-analytic GARCH VaR calculations can be based on new formulae for the first four moments of aggregated GARCH returns. Our extensive empirical study compares the Cornish–Fisher expansion with the Johnson SU distribution for fitting distributions to analytic moments of normal and Student t, symmetric and asymmetric (GJR) GARCH processes to returns data on different financial assets, for the purpose of deriving accurate GARCH VaR forecasts over multiple horizons and significance levels.
Resumo:
In order to enhance the quality of care, healthcare organisations are increasingly resorting to clinical decision support systems (CDSSs), which provide physicians with appropriate health care decisions or recommendations. However, how to explicitly represent the diverse vague medical knowledge and effectively reason in the decision-making process are still problems we are confronted. In this paper, we incorporate semiotics into fuzzy logic to enhance CDSSs with the aim of providing both the abilities of describing medical domain concepts contextually and reasoning with vague knowledge. A semiotically inspired fuzzy CDSSs framework is presented, based on which the vague knowledge representation and reasoning process are demonstrated.
Resumo:
Patient perspectives on how therapeutic letters contributed to their experience of cognitive analytic therapy (CAT) were investigated. Eight patients took part in semistructured interviews. A grounded, thematic analysis of their accounts suggested four general processes. First, letters offered a tangible, lasting framework for the assimilation of a new perspective about themselves and their relationships and facilitated coping with a complex range of emotions and risks this awareness required. Second, they demonstrated therapists’ commitment to patients’ growth. Third, they helped to teach participants about the therapy process as an example of an interpersonal exchange. Fourth, they helped participants consider how they wished to share personal information. These data offer a more complex understanding of this standard CAT intervention. Although some findings are consistent with CAT theory, the range of emotional dilemmas associated with letters has not received specific attention. Clinical implications are discussed.
Resumo:
The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3–UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3–UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN > 3 nm), while the profiles of larger particles (e.g. CN > 100 nm) are controlled by the same processes as the component mass profiles, plus the size distribution of primary emissions. We also show that the processes that affect the AOD-normalised radiative forcing in the model are predominantly those that affect the vertical mass distribution, in particular convective transport, in-cloud scavenging, aqueous oxidation, ageing and the vertical extent of biomass-burning emissions.