20 resultados para computer network


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An orthogonal forward selection (OFS) algorithm based on the leave-one-out (LOO) criterion is proposed for the construction of radial basis function (RBF) networks with tunable nodes. This OFS-LOO algorithm is computationally efficient and is capable of identifying parsimonious RBF networks that generalise well. Moreover, the proposed algorithm is fully automatic and the user does not need to specify a termination criterion for the construction process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new probabilistic neural network (PNN) learning algorithm based on forward constrained selection (PNN-FCS) is proposed. An incremental learning scheme is adopted such that at each step, new neurons, one for each class, are selected from the training samples arid the weights of the neurons are estimated so as to minimize the overall misclassification error rate. In this manner, only the most significant training samples are used as the neurons. It is shown by simulation that the resultant networks of PNN-FCS have good classification performance compared to other types of classifiers, but much smaller model sizes than conventional PNN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the idea of an important cluster, a new multi-level probabilistic neural network (MLPNN) is introduced. The MLPNN uses an incremental constructive approach, i.e. it grows level by level. The construction algorithm of the MLPNN is proposed such that the classification accuracy monotonically increases to ensure that the classification accuracy of the MLPNN is higher than or equal to that of the traditional PNN. Numerical examples are included to demonstrate the effectiveness of proposed new approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mobile Network Optimization (MNO) technologies have advanced at a tremendous pace in recent years. And the Dynamic Network Optimization (DNO) concept emerged years ago, aimed to continuously optimize the network in response to variations in network traffic and conditions. Yet, DNO development is still at its infancy, mainly hindered by a significant bottleneck of the lengthy optimization runtime. This paper identifies parallelism in greedy MNO algorithms and presents an advanced distributed parallel solution. The solution is designed, implemented and applied to real-life projects whose results yield a significant, highly scalable and nearly linear speedup up to 6.9 and 14.5 on distributed 8-core and 16-core systems respectively. Meanwhile, optimization outputs exhibit self-consistency and high precision compared to their sequential counterpart. This is a milestone in realizing the DNO. Further, the techniques may be applied to similar greedy optimization algorithm based applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bloom filter is a space efficient randomized data structure for representing a set and supporting membership queries. Bloom filters intrinsically allow false positives. However, the space savings they offer outweigh the disadvantage if the false positive rates are kept sufficiently low. Inspired by the recent application of the Bloom filter in a novel multicast forwarding fabric, this paper proposes a variant of the Bloom filter, the optihash. The optihash introduces an optimization for the false positive rate at the stage of Bloom filter formation using the same amount of space at the cost of slightly more processing than the classic Bloom filter. Often Bloom filters are used in situations where a fixed amount of space is a primary constraint. We present the optihash as a good alternative to Bloom filters since the amount of space is the same and the improvements in false positives can justify the additional processing. Specifically, we show via simulations and numerical analysis that using the optihash the false positives occurrences can be reduced and controlled at a cost of small additional processing. The simulations are carried out for in-packet forwarding. In this framework, the Bloom filter is used as a compact link/route identifier and it is placed in the packet header to encode the route. At each node, the Bloom filter is queried for membership in order to make forwarding decisions. A false positive in the forwarding decision is translated into packets forwarded along an unintended outgoing link. By using the optihash, false positives can be reduced. The optimization processing is carried out in an entity termed the Topology Manger which is part of the control plane of the multicast forwarding fabric. This processing is only carried out on a per-session basis, not for every packet. The aim of this paper is to present the optihash and evaluate its false positive performances via simulations in order to measure the influence of different parameters on the false positive rate. The false positive rate for the optihash is then compared with the false positive probability of the classic Bloom filter.