21 resultados para clustered binary data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to apply and compare two time-domain analysis procedures in the determination of oxygen uptake (VO2) kinetics in response to a pseudorandom binary sequence (PRBS) exercise test. PRBS exercise tests have typically been analysed in the frequency domain. However, the complex interpretation of frequency responses may have limited the application of this procedure in both sporting and clinical contexts, where a single time measurement would facilitate subject comparison. The relative potential of both a mean response time (MRT) and a peak cross-correlation time (PCCT) was investigated. This study was divided into two parts: a test-retest reliability study (part A), in which 10 healthy male subjects completed two identical PRBS exercise tests, and a comparison of the VO2 kinetics of 12 elite endurance runners (ER) and 12 elite sprinters (SR; part B). In part A, 95% limits of agreement were calculated for comparison between MRT and PCCT. The results of part A showed no significant difference between test and retest as assessed by MRT [mean (SD) 42.2 (4.2) s and 43.8 (6.9) s] or by PCCT [21.8 (3.7) s and 22.7 (4.5) s]. Measurement error (%) was lower for MRT in comparison with PCCT (16% and 25%, respectively). In part B of the study, the VO2 kinetics of ER were significantly faster than those of SR, as assessed by MRT [33.4 (3.4) s and 39.9 (7.1) s, respectively; P<0.01] and PCCT [20.9 (3.8) s and 24.8 (4.5) s; P < 0.05]. It is possible that either analysis procedure could provide a single test measurement Of VO2 kinetics; however, the greater reliability of the MRT data suggests that this method has more potential for development in the assessment Of VO2 kinetics by PRBS exercise testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FoxC, FoxF, FoxL1 and FoxQ1 genes have been shown to be clustered in some animal genomes, with mesendodermal expression hypothesised as a selective force maintaining cluster integrity. Hypotheses are, however, constrained by a lack of data from the Lophotrochozoa. Here we characterise members of the FoxC, FoxF, FoxL1 and FoxQ1 families from the annelid Capitella teleta and the molluscs Lottia gigantea and Patella vulgata. We cloned FoxC, FoxF, FoxL1 and FoxQ1 genes from C. teleta, and FoxC, FoxF and FoxL1 genes from P. vulgata, and established their expression during development. We also examined their genomic organisation in C. teleta and L. gigantea, and investigated local syntenic relationships. Our results show mesodermal and anterior gut expression is a common feature of these genes in lophotrochozoans. In L. gigantea FoxC, FoxF and FoxL1 are closely linked, while in C. teleta Ct-foxC and Ct-foxL1 are closely linked, with Ct-foxF and Ct-foxQ1 on different scaffolds. Adjacent to these genes there is limited evidence of local synteny. This demonstrates conservation of genomic organisation and expression of these genes can be traced in all three bilaterian Superphyla. These data are evaluated against competing theories for the long-term maintenance of gene clusters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of flood inundation models is often assessed using satellite observed data; however these data have inherent uncertainty. In this study we assess the impact of this uncertainty when calibrating a flood inundation model (LISFLOOD-FP) for a flood event in December 2006 on the River Dee, North Wales, UK. The flood extent is delineated from an ERS-2 SAR image of the event using an active contour model (snake), and water levels at the flood margin calculated through intersection of the shoreline vector with LiDAR topographic data. Gauged water levels are used to create a reference water surface slope for comparison with the satellite-derived water levels. Residuals between the satellite observed data points and those from the reference line are spatially clustered into groups of similar values. We show that model calibration achieved using pattern matching of observed and predicted flood extent is negatively influenced by this spatial dependency in the data. By contrast, model calibration using water elevations produces realistic calibrated optimum friction parameters even when spatial dependency is present. To test the impact of removing spatial dependency a new method of evaluating flood inundation model performance is developed by using multiple random subsamples of the water surface elevation data points. By testing for spatial dependency using Moran’s I, multiple subsamples of water elevations that have no significant spatial dependency are selected. The model is then calibrated against these data and the results averaged. This gives a near identical result to calibration using spatially dependent data, but has the advantage of being a statistically robust assessment of model performance in which we can have more confidence. Moreover, by using the variations found in the subsamples of the observed data it is possible to assess the effects of observational uncertainty on the assessment of flooding risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global communicationrequirements andloadimbalanceof someparalleldataminingalgorithms arethe major obstacles to exploitthe computational power of large-scale systems. This work investigates how non-uniform data distributions can be exploited to remove the global communication requirement and to reduce the communication costin parallel data mining algorithms and, in particular, in the k-means algorithm for cluster analysis. In the straightforward parallel formulation of the k-means algorithm, data and computation loads are uniformly distributed over the processing nodes. This approach has excellent load balancing characteristics that may suggest it could scale up to large and extreme-scale parallel computing systems. However, at each iteration step the algorithm requires a global reduction operationwhichhinders thescalabilityoftheapproach.Thisworkstudiesadifferentparallelformulation of the algorithm where the requirement of global communication is removed, while maintaining the same deterministic nature ofthe centralised algorithm. The proposed approach exploits a non-uniform data distribution which can be either found in real-world distributed applications or can be induced by means ofmulti-dimensional binary searchtrees. The approachcanalso be extended to accommodate an approximation error which allows a further reduction ofthe communication costs. The effectiveness of the exact and approximate methods has been tested in a parallel computing system with 64 processors and in simulations with 1024 processing element

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exascale systems are the next frontier in high-performance computing and are expected to deliver a performance of the order of 10^18 operations per second using massive multicore processors. Very large- and extreme-scale parallel systems pose critical algorithmic challenges, especially related to concurrency, locality and the need to avoid global communication patterns. This work investigates a novel protocol for dynamic group communication that can be used to remove the global communication requirement and to reduce the communication cost in parallel formulations of iterative data mining algorithms. The protocol is used to provide a communication-efficient parallel formulation of the k-means algorithm for cluster analysis. The approach is based on a collective communication operation for dynamic groups of processes and exploits non-uniform data distributions. Non-uniform data distributions can be either found in real-world distributed applications or induced by means of multidimensional binary search trees. The analysis of the proposed dynamic group communication protocol has shown that it does not introduce significant communication overhead. The parallel clustering algorithm has also been extended to accommodate an approximation error, which allows a further reduction of the communication costs. The effectiveness of the exact and approximate methods has been tested in a parallel computing system with 64 processors and in simulations with 1024 processing elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies showed that features extracted from brain MRIs can well discriminate Alzheimer’s disease from Mild Cognitive Impairment. This study provides an algorithm that sequentially applies advanced feature selection methods for findings the best subset of features in terms of binary classification accuracy. The classifiers that provided the highest accuracies, have been then used for solving a multi-class problem by the one-versus-one strategy. Although several approaches based on Regions of Interest (ROIs) extraction exist, the prediction power of features has not yet investigated by comparing filter and wrapper techniques. The findings of this work suggest that (i) the IntraCranial Volume (ICV) normalization can lead to overfitting and worst the accuracy prediction of test set and (ii) the combined use of a Random Forest-based filter with a Support Vector Machines-based wrapper, improves accuracy of binary classification.