20 resultados para biaxial compression


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cassini flyby of Jupiter occurred at a time near solar maximum. Consequently, the pre-Jupiter data set reveals clear and numerous transient perturbations to the Parker Spiral solar wind structure. Limited plasma data are available at Cassini for this period due to pointing restrictions imposed on the instrument. This renders the identification of the nature of such structures ambiguous, as determinations based on the magnetic field data alone are unreliable. However, a fortuitous alignment of the planets during this encounter allowed us to trace these structures back to those observed previously by the Wind spacecraft near the Earth. Of the phenomena that we are satisfactorily able to trace back to their manifestation at 1 AU, two are identified as being due to interplanetary coronal mass ejections. One event at Cassini is shown to be a merged interaction region, which is formed from the compression of a magnetic cloud by two anomalously fast solar wind streams. The flux-rope structure associated with this magnetic cloud is not as apparent at Cassini and has most likely been compressed and deformed. Confirmation of the validity of the ballistic projections used here is provided by results obtained from a one-dimensional magnetohydrodynamic projection of solar wind parameters measured upstream near the Earth. It is found that when the Earth and Cassini are within a few tens of degrees in heliospheric longitude, the results of this one-dimensional model predict the actual conditions measured at 5 AU to an impressive degree. Finally, the validity of the use of such one-dimensional projections in obtaining quasi-solar wind parameters at the outer planets is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of wild-type puroindoline-b (Pin-b+) and two mutant forms having single residue substitutions (G46S or W44R) with L-alpha-dipalmitoylphosphatidyl-dl-glycerol (DPPG) as a Langmuir monolayer at the air/water interface was investigated by neutron reflectivity (NR) and Brewster angle microscopy (BAM). NR profiles were fitted using a three-layer model to enable differences in penetration of protein between the lipid headgroup and acyl regions to be determined. The data showed similar surface excesses for each of the three proteins at the interface; however, it was revealed that the depth of penetration of protein into the lipid region differed for each protein with Pin-b+ penetrating further into the acyl region of the lipid compared to the mutant forms of the protein that interacted with the headgroup region only. BAM images revealed that the domain structure of the DPPG monolayers was disrupted when Pin-b+ adsorption had reached equilibrium, suggesting protein penetration had led to compression of the lipid region. In contrast, the domain structure was unaffected by the W44R mutant, suggesting no change in compression of the lipid region and hence little or no penetration of protein into the lipid layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The images taken by the Heliospheric Imagers (HIs), part of the SECCHI imaging package onboard the pair of STEREO spacecraft, provide information on the radial and latitudinal evolution of the plasma compressed inside corotating interaction regions (CIRs). A plasma density wave imaged by the HI instrument onboard STEREO-B was found to propagate towards STEREO-A, enabling a comparison between simultaneous remotesensing and in situ observations of its structure to be performed. In situ measurements made by STEREO-A show that the plasma density wave is associated with the passage of a CIR. The magnetic field compressed after the CIR stream interface (SI) is found to have a planar distribution. Minimum variance analysis of the magnetic field vectors shows that the SI is inclined at 54° to the orbital plane of the STEREO-A spacecraft. This inclination of the CIR SI is comparable to the inclination of the associated plasma density wave observed by HI. A small-scale magnetic cloud with a flux rope topology and radial extent of 0.08 AU is also embedded prior to the SI. The pitch-angle distribution of suprathermal electrons measured by the STEREO-A SWEA instrument shows that an open magnetic field topology in the cloud replaced the heliospheric current sheet locally. These observations confirm that HI observes CIRs in difference images when a small-scale transient is caught up in the compression region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure and flow behaviour of binary mixtures of Pluronic block copolymers P85 and P123 is investigated by small-angle scattering, rheometry and mobility tests. Micelle dimensions are probed by dynamic light scattering. The micelle hydrodynamic radius for the 50/50 mixture is larger than that for either P85 or P123 alone, Clue to the formation of mixed micelles with a higher association number. The phase diagram for 50/50 mixtures contains regions Of Cubic and hexagonal phases similar to those for the parent homopolymers, however the region of stability of the cubic phase is enhanced at low temperature and concentrations above 40 wt%. This is ascribed to favourable packing of the mixed micelles containing core blocks with two different chain lengths, but similar corona chain lengths. The shear flow alignment of face-centred cubic and hexagonal phases is probed by in situ small-angle X-ray or neutron scattering with simultaneous rheology. The hexagonal phase can be aligned using steady shear in a Couette geometry, however the high modulus Cubic phase cannot be aligned well in this way. This requires the application of oscillatory shear or compression. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite recent research exploring the elastic properties of avian keratins, data on failure properties are less common in the literature. In this paper we present data on the failure properties and moduli of both avian feather and claw keratin in tension and the modulus of claw keratin in compression. Increased water content acts to decrease stiffness and strength but to increase strain at failure. The modulus of claw did not differ significantly when tested under tension and compression.