17 resultados para baxyon magnetic moment
Resumo:
In this paper we investigate the equilibrium properties of magnetic dipolar (ferro-) fluids and discuss finite-size effects originating from the use of different boundary conditions in computer simulations. Both periodic boundary conditions and a finite spherical box are studied. We demonstrate that periodic boundary conditions and subsequent use of Ewald sum to account for the long-range dipolar interactions lead to a much faster convergence (in terms of the number of investigated dipolar particles) of the magnetization curve and the initial susceptibility to their thermodynamic limits. Another unwanted effect of the simulations in a finite spherical box geometry is a considerable sensitivity to the container size. We further investigate the influence of the surface term in the Ewald sum-that is, due to the surrounding continuum with magnetic permeability mu(BC)-on the convergence properties of our observables and on the final results. The two different ways of evaluating the initial susceptibility, i.e., (1) by the magnetization response of the system to an applied field and (2) by the zero-field fluctuation of the mean-square dipole moment of the system, are compared in terms of speed and accuracy.
Resumo:
We study by Langevin molecular dynamics simulations systematically the influence of polydispersity in the particle size, and subsequently in the dipole moment, on the physical properties of ferrofluids. The polydispersity is in a first approximation modeled by a bidisperse system that consists of small and large particles at different ratios of their volume fractions. In the first part of our investigations the total volume fraction of the system is fixed, and the volume fraction phi(L) of the large particles is varied. The initial susceptibility chi and magnetization curve of the systems show a strong dependence on the value of phi(L). With the increase of phi(L), the magnetization M of the system has a much faster increment at weak fields, and thus leads to a larger chi. We performed a cluster analysis that indicates that this is due to the aggregation of the large particles in the systems. The average size of these clusters increases with increasing phi(L). In the second part of our investigations, we fixed the volume fraction of the large particles, and increased the volume fraction phi(S) of the small particles in order to study their influence on the chain formation of the large ones. We found that the average aggregate size formed by large particles decreases when phi(S) is increased, demonstrating a significant effect of the small particles on the structural properties of the system. A topological analysis of the structure reveals that the majority of the small particles remain nonaggregated. Only a small number of them are attracted to the ends of the chains formed by large particles.