85 resultados para automatic attention


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We argue that hyper-systemizing predisposes individuals to show talent, and review evidence that hyper-systemizing is part of the cognitive style of people with autism spectrum conditions (ASC). We then clarify the hyper-systemizing theory, contrasting it to the weak central coherence (WCC) and executive dysfunction (ED) theories. The ED theory has difficulty explaining the existence of talent in ASC. While both hyper-systemizing and WCC theories postulate excellent attention to detail, by itself excellent attention to detail will not produce talent. By contrast, the hyper-systemizing theory argues that the excellent attention to detail is directed towards detecting 'if p, then q' rules (or [input-operation-output] reasoning). Such law-based pattern recognition systems can produce talent in systemizable domains. Finally, we argue that the excellent attention to detail in ASC is itself a consequence of sensory hypersensitivity. We review an experiment from our laboratory demonstrating sensory hypersensitivity detection thresholds in vision. We conclude that the origins of the association between autism and talent begin at the sensory level, include excellent attention to detail and end with hyper-systemizing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification of criminal networks is not a routine exploratory process within the current practice of the law enforcement authorities; rather it is triggered by specific evidence of criminal activity being investigated. A network is identified when a criminal comes to notice and any associates who could also be potentially implicated would need to be identified if only to be eliminated from the enquiries as suspects or witnesses as well as to prevent and/or detect crime. However, an identified network may not be the one causing most harm in a given area.. This paper identifies a methodology to identify all of the criminal networks that are present within a Law Enforcement Area, and, prioritises those that are causing most harm to the community. Each crime is allocated a score based on its crime type and how recently the crime was committed; the network score, which can be used as decision support to help prioritise it for law enforcement purposes, is the sum of the individual crime scores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are still major challenges in the area of automatic indexing and retrieval of multimedia content data for very large multimedia content corpora. Current indexing and retrieval applications still use keywords to index multimedia content and those keywords usually do not provide any knowledge about the semantic content of the data. With the increasing amount of multimedia content, it is inefficient to continue with this approach. In this paper, we describe the project DREAM, which addresses such challenges by proposing a new framework for semi-automatic annotation and retrieval of multimedia based on the semantic content. The framework uses the Topic Map Technology, as a tool to model the knowledge automatically extracted from the multimedia content using an Automatic Labelling Engine. We describe how we acquire knowledge from the content and represent this knowledge using the support of NLP to automatically generate Topic Maps. The framework is described in the context of film post-production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 3D reconstruction of a Golgi-stained dendritic tree from a serial stack of images captured with a transmitted light bright-field microscope is investigated. Modifications to the bootstrap filter are discussed such that the tree structure may be estimated recursively as a series of connected segments. The tracking performance of the bootstrap particle filter is compared against Differential Evolution, an evolutionary global optimisation method, both in terms of robustness and accuracy. It is found that the particle filtering approach is significantly more robust and accurate for the data considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The externally recorded electroencephalogram (EEG) is contaminated with signals that do not originate from the brain, collectively known as artefacts. Thus, EEG signals must be cleaned prior to any further analysis. In particular, if the EEG is to be used in online applications such as Brain-Computer Interfaces (BCIs) the removal of artefacts must be performed in an automatic manner. This paper investigates the robustness of Mutual Information based features to inter-subject variability for use in an automatic artefact removal system. The system is based on the separation of EEG recordings into independent components using a temporal ICA method, RADICAL, and the utilisation of a Support Vector Machine for classification of the components into EEG and artefact signals. High accuracy and robustness to inter-subject variability is achieved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic indexing and retrieval of digital data poses major challenges. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions, or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. For a number of years research has been ongoing in the field of ontological engineering with the aim of using ontologies to add such (meta) knowledge to information. In this paper, we describe the architecture of a system (Dynamic REtrieval Analysis and semantic metadata Management (DREAM)) designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval. The DREAM Demonstrator has been evaluated as deployed in the film post-production phase to support the process of storage, indexing and retrieval of large data sets of special effects video clips as an exemplar application domain. This paper provides its performance and usability results and highlights the scope for future enhancements of the DREAM architecture which has proven successful in its first and possibly most challenging proving ground, namely film production, where it is already in routine use within our test bed Partners' creative processes. (C) 2009 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An automatic nonlinear predictive model-construction algorithm is introduced based on forward regression and the predicted-residual-sums-of-squares (PRESS) statistic. The proposed algorithm is based on the fundamental concept of evaluating a model's generalisation capability through crossvalidation. This is achieved by using the PRESS statistic as a cost function to optimise model structure. In particular, the proposed algorithm is developed with the aim of achieving computational efficiency, such that the computational effort, which would usually be extensive in the computation of the PRESS statistic, is reduced or minimised. The computation of PRESS is simplified by avoiding a matrix inversion through the use of the orthogonalisation procedure inherent in forward regression, and is further reduced significantly by the introduction of a forward-recursive formula. Based on the properties of the PRESS statistic, the proposed algorithm can achieve a fully automated procedure without resort to any other validation data set for iterative model evaluation. Numerical examples are used to demonstrate the efficacy of the algorithm.