523 resultados para atmospheric precipitation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diurnal cycle of tropical convection and its relationship to the atmospheric tides is investigated using an aquaplanet GCM. The diurnal and semidiurnal harmonics of precipitation are both found to contribute significantly to the total diurnal variability of precipitation in the model, which is broadly consistent with observations of the diurnal cycle of convection over the open ocean. The semidiurnal tide is found to be the dominant forcing for the semidiurnal harmonic of precipitation. In contrast the diurnal tide plays only a small role in forcing the diurnal harmonic of precipitation, which is dominated by the variations in shortwave and longwave heating. In both the diurnal and semidiurnal harmonics, the feedback onto the convection by the humidity tendencies due to the convection is found to be important in determining the phase of the harmonics. Further experiments show that the diurnal cycle of precipitation is sensitive to the choice of closure in the convection scheme. While the surface pressure signal of the simulated atmospheric tides in the model agree well with both theory and observations in their magnitude and phase, sensitivity experiments suggest that the role of the stratospheric ozone in forcing the semidiurnal tide is much reduced compared to theoretical predictions. Furthermore, the influence of the cloud radiative effects seems small. It is suggested that the radiative heating profile in the troposphere, associated primarily with the water vapor distribution, is more important than previously thought for driving the semidiurnal tide. However, this result may be sensitive to the vertical resolution and extent of the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method to estimate the size and liquid water content of drizzle drops using lidar measurements at two wavelengths is described. The method exploits the differential absorption of infrared light by liquid water at 905 nm and 1.5 μm, which leads to a different backscatter cross section for water drops larger than ≈50 μm. The ratio of backscatter measured from drizzle samples below cloud base at these two wavelengths (the colour ratio) provides a measure of the median volume drop diameter D0. This is a strong effect: for D0=200 μm, a colour ratio of ≈6 dB is predicted. Once D0 is known, the measured backscatter at 905 nm can be used to calculate the liquid water content (LWC) and other moments of the drizzle drop distribution. The method is applied to observations of drizzle falling from stratocumulus and stratus clouds. High resolution (32 s, 36 m) profiles of D0, LWC and precipitation rate R are derived. The main sources of error in the technique are the need to assume a value for the dispersion parameter μ in the drop size spectrum (leading to at most a 35% error in R) and the influence of aerosol returns on the retrieval (≈10% error in R for the cases considered here). Radar reflectivities are also computed from the lidar data, and compared to independent measurements from a colocated cloud radar, offering independent validation of the derived drop size distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric factors Governing Banded Orographic Convection The three-dimensional structure of shallow orographic convection is investigated through simulations performed with a cloud-resolving numerical model. In moist flows that overcome a given topographic barrier to form statically unstable cap clouds, the organization of the convection depends on both the atmospheric structure and the mechanism by which the convection is initiated. Convection initiated by background thermal fluctuations embedded in the flow over a smooth mountain (without any small-scale topographic features) tends to be cellular and disorganized except that shear-parallel bands may form in flows with strong unidirectional vertical shear. The development of well-organized bands is favored when there is weak static instability inside the cloud and when the dry air surrounding the cloud is strongly stable. These bands move with the flow and distribute their cumulative precipitation evenly over the mountain upslope. Similar shear-parallel bands also develop in flows where convection is initiated by small-scale topographic noise superimposed onto the main mountain profile, but in this case stronger circulations are also triggered that create stationary rainbands parallel to the low-level flow. This second dominant mode, which is less sensitive to the atmospheric structure and the strength of forcing, is triggered by lee waves that form over small-scale topographic bumps near the upstream edge of the main orographic cloud. Due to their stationarity, these flow-parallel bands can produce locally heavy precipitation amounts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of shallow cellular convection in warm orographic clouds is investigated through idealized numerical simulations of moist flow over topography using a cloud-resolving numerical model. Buoyant instability, a necessary element for moist convection, is found to be diagnosed most accurately through analysis of the moist Brunt–Väisälä frequency (N_m) rather than the vertical profile of θ_e. In statically unstable orographic clouds (N_m^2) < 0), additional environmental and terrain-related factors are shown to have major effects on the amount of cellularity that occurs in 2D simulations. One of these factors, the basic-state wind shear, may suppress convection in 2D yet allow for longitudinal convective roll circulations in 3D. The presence of convective structures within an orographic cloud substantially enhanced the maximum rainfall rates, precipitation efficiencies, and precipitation accumulations in all simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Empirical studies using satellite data and radiosondes have shown that precipitation increases with column water vapor (CWV) in the tropics, and that this increase is much steeper above some critical CWV value. Here, eight years of 1-min-resolution microwave radiometer and optical gauge data at Nauru Island are analyzed to better understand the relationships among CWV, column liquid water (CLW), and precipitation at small time scales. CWV is found to have large autocorrelation times compared with CLW and precipitation. Before precipitation events, CWV increases on both a synoptic-scale time period and a subsequent shorter time period consistent with mesoscale convective activity; the latter period is associated with the highest CWV levels. Probabilities of precipitation increase greatly with CWV. Given initial high CWV, this increased probability of precipitation persists at least 10–12 h. Even in periods of high CWV, however, probabilities of initial precipitation in a 5-min period remain low enough that there tends to be a lag before the start of the next precipitation event. This is consistent with precipitation occurring stochastically within environments containing high CWV, with the latter being established by a combination of synoptic-scale and mesoscale forcing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have examined the atmospheric water cycle of both Polar Regions, pole wards of 60°N and 60°S, using the ERA-Interim re-analysis and high-resolution simulations with the ECHAM5 model for both the present and future climate based on the IPCC, A1B scenario, representative of the last three decades of the 21st century. The annual precipitation in ERA-Interim amounts to ~17000 km3 and is more or less the same in the Arctic and the Antarctic, but it is composed differently. In the Arctic the annual evaporation is some 8000 km3 but some 3000 km3 less in the Antarctica where the net horizontal transport is correspondingly larger. The net water transport of the model is more intense than in ERA-Interim, in the Arctic the difference is 2.5% and in the Antarctic it is 6.2%. Precipitation and net horizontal transport in the Arctic has a maximum in August and September. Evaporation peaks in June and July. The seasonal cycle is similar in Antarctica with the highest precipitation in the austral autumn. The largest net transport occurs at the end of the major extra-tropical storm tracks in the Northern Hemisphere such as the eastern Pacific and eastern north Atlantic. The variability of the model is virtually identical to that of the re-analysis and there are no changes in variability between the present climate and the climate at the end of the 21st century when normalized with the higher level of moisture. The changes from year to year are substantial with the 20 and 30-year records being generally too short to identify robust trends in the hydrological cycle. In the A1B climate scenario the strength of the water cycle increases by some 25% in the Arctic and by 19% in the Antarctica, as measured by annual precipitation. The increase in the net horizontal transport is 29% and 22% respectively, and the increase in evaporation correspondingly less. The net transport follows closely the Clausius-Clapeyron relation. There is 2 a minor change in the annual cycle of the Arctic atmospheric water cycle with the maximum transport and precipitation occurring later in the year. There is a small imbalance of some 4-6% between the net transport and precipitation minus evaporation. We suggest that this is mainly due to the fact the transport is calculated from instantaneous 6-hourly data while precipitation and evaporation is accumulated over a 6 hour period. The residual difference is proportionally similar for all experiments and hardly varies from year to year.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CloudSat is a satellite experiment designed to measure the vertical structure of clouds from space. The expected launch of CloudSat is planned for 2004, and once launched, CloudSat will orbit in formation as part of a constellation of satellites (the A-Train) that includes NASA's Aqua and Aura satellites, a NASA-CNES lidar satellite (CALIPSO), and a CNES satellite carrying a polarimeter (PARASOL). A unique feature that CloudSat brings to this constellation is the ability to fly a precise orbit enabling the fields of view of the CloudSat radar to be overlapped with the CALIPSO lidar footprint and the other measurements of the constellation. The precision and near simultaneity of this overlap creates a unique multisatellite observing system for studying the atmospheric processes essential to the hydrological cycle.The vertical profiles of cloud properties provided by CloudSat on the global scale fill a critical gap in the investigation of feedback mechanisms linking clouds to climate. Measuring these profiles requires a combination of active and passive instruments, and this will be achieved by combining the radar data of CloudSat with data from other active and passive sensors of the constellation. This paper describes the underpinning science and general overview of the mission, provides some idea of the expected products and anticipated application of these products, and the potential capability of the A-Train for cloud observations. Notably, the CloudSat mission is expected to stimulate new areas of research on clouds. The mission also provides an important opportunity to demonstrate active sensor technology for future scientific and tactical applications. The CloudSat mission is a partnership between NASA's JPL, the Canadian Space Agency, Colorado State University, the U.S. Air Force, and the U.S. Department of Energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the global atmospheric budgets of mass, moisture, energy and angular momentum in the latest reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF), ERA-Interim, for the period 1989–2008 and compare with ERA-40. Most of the measures we use indicate that the ERA-Interim reanalysis is superior in quality to ERA-40. In ERA-Interim the standard deviation of the monthly mean global dry mass of 0.7 kg m−2 (0.007%) is slightly worse than in ERA-40, and long time-scale variations in dry mass originate predominately in the surface pressure field. The divergent winds are improved in ERA-Interim: the global standard deviation of the time-averaged dry mass budget residual is 10 kg m−2 day−1 and the quality of the cross-equatorial mass fluxes is improved. The temporal variations in the global evaporation minus precipitation (E − P) are too large but the global moisture budget residual is 0.003 kg m−2 day−1 with a spatial standard deviation of 0.3 kg m−2 day−1. Both the E − P over ocean and P − E over land are about 15% larger than the 1.1 Tg s−1 transport of water from ocean to land. The top of atmosphere (TOA) net energy losses are improved, with a value of 1 W m−2, but the meridional gradient of the TOA net energy flux is smaller than that from the Clouds and the Earth's Radiant Energy System (CERES) data. At the surface the global energy losses are worse, with a value of 7 W m−2. Over land however, the energy loss is only 0.5 W m−2. The downwelling thermal radiation at the surface in ERA-Interim of 341 W m−2 is towards the higher end of previous estimates. The global mass-adjusted energy budget residual is 8 W m−2 with a spatial standard deviation of 11 W m−2, and the mass-adjusted atmospheric energy transport from low to high latitudes (the sum for the two hemispheres) is 9.5 PW

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a new Bayesian approach to retrieve oceanic rain rate from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), with an emphasis on typhoon cases in the West Pacific. Retrieved rain rates are validated with measurements of rain gauges located on Japanese islands. To demonstrate improvement, retrievals are also compared with those from the TRMM/Precipitation Radar (PR), the Goddard Profiling Algorithm (GPROF), and a multi-channel linear regression statistical method (MLRS). We have found that qualitatively, all methods retrieved similar horizontal distributions in terms of locations of eyes and rain bands of typhoons. Quantitatively, our new Bayesian retrievals have the best linearity and the smallest root mean square (RMS) error against rain gauge data for 16 typhoon overpasses in 2004. The correlation coefficient and RMS of our retrievals are 0.95 and ~2 mm hr-1, respectively. In particular, at heavy rain rates, our Bayesian retrievals outperform those retrieved from GPROF and MLRS. Overall, the new Bayesian approach accurately retrieves surface rain rate for typhoon cases. Accurate rain rate estimates from this method can be assimilated in models to improve forecast and prevent potential damages in Taiwan during typhoon seasons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

n this study, we investigated the features of Arctic Oscillation (AO) and Antarctic Oscillation (AAO), that is, the annular modes in the extratropics, in the internal atmospheric variability attained through an ensemble of integrations by an atmospheric general circulation model (AGCM) forced with the global observed SSTs. We focused on the interannual variability of AO/AAO, which is dominated by internal atmospheric variability. In comparison with previous observed results, the AO/AAO in internal atmospheric variability bear some similar characteristics, but exhibit a much clearer spatial structure: significant correlation between the North Pacific and North Atlantic centers of action, much stronger and more significant associated precipitation anomalies, and the meridional displacement of upper-tropospheric westerly jet streams in the Northern/Southern Hemisphere. In addition, we examined the relationship between the North Atlantic Oscillation (NAO)/AO and East Asian winter monsoon (EAWM). It has been shown that in the internal atmospheric variability, the EAWM variation is significantly related to the NAO through upper-tropospheric atmospheric teleconnection patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiative forcing is a useful tool for predicting equilibrium global temperature change. However, it is not so useful for predicting global precipitation changes, as changes in precipitation strongly depend on the climate change mechanism and how it perturbs the atmospheric and surface energy budgets. Here a suite of climate model experiments and radiative transfer calculations are used to quantify and assess this dependency across a range of climate change mechanisms. It is shown that the precipitation response can be split into two parts: a fast atmospheric response that strongly correlates with the atmospheric component of radiative forcing, and a slower response to global surface temperature change that is independent of the climate change mechanism, ∼2-3% per unit of global surface temperature change. We highlight the precipitation response to black carbon aerosol forcing as falling within this range despite having an equilibrium response that is of opposite sign to the radiative forcing and global temperature change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robust and physically understandable responses of the global atmospheric water cycle to a warming climate are presented. By considering interannual responses to changes in surface temperature (T), observations and AMIP5 simulations agree on an increase in column integrated water vapor at the rate 7 %/K (in line with the Clausius­Clapeyron equation) and of precipitation at the rate 2-­3 %/K (in line with energetic constraints). Using simple and complex climate models, we demonstrate that radiative forcing by greenhouse gases is currently suppressing global precipitation (P) at ~ -0.15 %/decade. Along with natural variability, this can explain why observed trends in global P over the period 1988-2008 are close to zero. Regional responses in the global water cycle are strongly constrained by changes in moisture fluxes. Model simulations show an increased moisture flux into the tropical wet region at 900 hPa and an enhanced outflow (of smaller magnitude) at around 600 hPa with warming. Moisture transport explains an increase in P in the wet tropical regions and small or negative changes in the dry regions of the subtropics in CMIP5 simulations of a warming climate. For AMIP5 simulations and satellite observations, the heaviest 5-day rainfall totals increase in intensity at ~15 %/K over the ocean with reductions at all percentiles over land. The climate change response in CMIP5 simulations shows consistent increases in P over ocean and land for the highest intensities, close to the Clausius-Clapeyron scaling of 7 %/K, while P declines for the lowest percentiles, indicating that interannual variability over land may not be a good proxy for climate change. The local changes in precipitation and its extremes are highly dependent upon small shifts in the large-scale atmospheric circulation and regional feedbacks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Droughts tend to evolve slowly and affect large areas simultaneously, which suggests that improved understanding of spatial coherence of drought would enable better mitigation of drought impacts through enhanced monitoring and forecasting strategies. This study employs an up-to-date dataset of over 500 river flow time series from 11 European countries, along with a gridded precipitation dataset, to examine the spatial coherence of drought in Europe using regional indicators of precipitation and streamflow deficit. The drought indicators were generated for 24 homogeneous regions and, for selected regions, historical drought characteristics were corroborated with previous work. The spatial coherence of drought characteristics was then examined at a European scale. Historical droughts generally have distinctive signatures in their spatio-temporal development, so there was limited scope for using the evolution of historical events to inform forecasting. Rather, relationships were explored in time series of drought indicators between regions. Correlations were generally low, but multivariate analyses revealed broad continental-scale patterns, which appear to be related to large-scale atmospheric circulation indices (in particular, the North Atlantic Oscillation and the East Atlantic West Russia pattern). A novel methodology for forecasting was developed (and demonstrated with reference to the United Kingdom), which predicts drought from drought i.e. uses spatial coherence of drought to facilitate early warning of drought in a target region, from drought which is developing elsewhere in Europe.Whilst the skill of the methodology is relatively modest at present, this approach presents a potential new avenue for forecasting, which offers significant advantages in that it allows prediction for all seasons, and also shows some potential for forecasting the termination of drought conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water vapour plays a key role in the Earth's energy balance. Almost 50% of the absorbed solar radiation at the surface is used to cool the surface, through evaporation, and warm the atmosphere, through release of latent heat. Latent heat is the single largest factor in warming the atmosphere and in transporting heat from low to high latitudes. Water vapour is also the dominant greenhouse gas and contributes to a warming of the climate system by some 24°C (Kondratev 1972). However, water vapour is a passive component in the troposphere as it is uniquely determined by temperature and should therefore be seen as a part of the climate feedback system. In this short overview, we will first describe the water on planet Earth and the role of the hydrological cycle: the way water vapour is transported between oceans and continents and the return of water via rivers to the oceans. Generally water vapour is well observed and analysed; however, there are considerable obstacles to observing precipitation, in particular over the oceans. The response of the hydrological cycle to global warming is far reaching. Because different physical processes control the change in water vapour and evaporation/precipitation, this leads to a more extreme distribution of precipitation making, in general, wet areas wetter and dry areas dryer. Another consequence is a transition towards more intense precipitation. It is to be expected that the changes in the hydrological cycle as a consequence of climate warming may be more severe that the temperature changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface mass balance for Greenland and Antarctica has been calculated using model data from an AMIP-type experiment for the period 1979–2001 using the ECHAM5 spectral transform model at different triangular truncations. There is a significant reduction in the calculated ablation for the highest model resolution, T319 with an equivalent grid distance of ca 40 km. As a consequence the T319 model has a positive surface mass balance for both ice sheets during the period. For Greenland, the models at lower resolution, T106 and T63, on the other hand, have a much stronger ablation leading to a negative surface mass balance. Calculations have also been undertaken for a climate change experiment using the IPCC scenario A1B, with a T213 resolution (corresponding to a grid distance of some 60 km) and comparing two 30-year periods from the end of the twentieth century and the end of the twenty-first century, respectively. For Greenland there is change of 495 km3/year, going from a positive to a negative surface mass balance corresponding to a sea level rise of 1.4 mm/year. For Antarctica there is an increase in the positive surface mass balance of 285 km3/year corresponding to a sea level fall by 0.8 mm/year. The surface mass balance changes of the two ice sheets lead to a sea level rise of 7 cm at the end of this century compared to end of the twentieth century. Other possible mass losses such as due to changes in the calving of icebergs are not considered. It appears that such changes must increase significantly, and several times more than the surface mass balance changes, if the ice sheets are to make a major contribution to sea level rise this century. The model calculations indicate large inter-annual variations in all relevant parameters making it impossible to identify robust trends from the examined periods at the end of the twentieth century. The calculated inter-annual variations are similar in magnitude to observations. The 30-year trend in SMB at the end of the twenty-first century is significant. The increase in precipitation on the ice sheets follows closely the Clausius-Clapeyron relation and is the main reason for the increase in the surface mass balance of Antarctica. On Greenland precipitation in the form of snow is gradually starting to decrease and cannot compensate for the increase in ablation. Another factor is the proportionally higher temperature increase on Greenland leading to a larger ablation. It follows that a modest increase in temperature will not be sufficient to compensate for the increase in accumulation, but this will change when temperature increases go beyond any critical limit. Calculations show that such a limit for Greenland might well be passed during this century. For Antarctica this will take much longer and probably well into following centuries.