29 resultados para apolipoprotein A1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Apolipoprotein B-48, the transport protein for chylomicrons, is identical with apolipoprotein B-100 for the first 48% of its sequence. No antiserum has yet been reported that can recognize apolipoprotein B-48, but not apolipoprotein B-100. 2. In the present study an antiserum was raised to the C-terminal sequence of apolipoprotein B-48, using specific chemical reactions to ensure that the charged carboxyl group of the C-terminal isoleucine residue was free. In a Western blot the antiserum was shown to bind to a protein band having the characteristics of apolipoprotein B-48, but not to apolipoprotein B-100. 3. In the early evening 11 subjects were given a test meal which contained 40 g of mixed oil and retinyl palmitate. Blood samples were collected over 9 h. Chylomicron-enriched fractions were prepared and analysed for triacylglycerol, retinyl palmitate and apolipoprotein B-48, the latter after separation using SDS/PAGE and visualization by chemiluminescence on a Western blot. Both triacylglycerol and apolipoprotein B-48 showed an early peak at 1 h, which was not seen with retinyl palmitate. All three substances gave a broader peak between 5 and 6 h postprandially. Retinyl palmitate concentrations declined rapidly during the late (6-9 h) postprandial period, but apolipoprotein B-48 concentrations remained elevated. 4. This study has shown that an antiserum has been produced which is specific for apolipoprotein B-48. This has enabled measurement of postprandial concentrations of the protein that revealed features of chylomicron metabolism which have not been reported previously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fredholm properties of Toeplitz operators on the Bergman space A2 have been well-known for continuous symbols since the 1970s. We investigate the case p=1 with continuous symbols under a mild additional condition, namely that of the logarithmic vanishing mean oscillation in the Bergman metric. Most differences are related to boundedness properties of Toeplitz operators acting on Ap that arise when we no longer have 1A1 were characterized completely very recently but only for bounded symbols. We also consider compactness of Hankel operators on A1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scope: Our aim was to determine the effects of chronic dietary fat manipulation on postprandial lipaemia according to apolipoprotein (APO)E genotype. Methods and results:Men (mean age 53 (SD 9) years), prospectively recruited for the APOE genotype (n = 12 E3/E3, n = 11 E3/E4), were assigned to a low fat (LF), high fat, high-saturated fat (HSF), and HSF diet with 3.45 g/day docosahexaenoic acid (HSF-DHA), each for an 8-week period in the same order. At the end of each dietary period, a postprandial assessment was performed using a test meal with a macronutrient profile representative of that dietary intervention. A variable postprandial plasma triacylglycerol (TAG) response according to APOE genotype was evident, with a greater sensitivity to the TAG-lowering effects of DHA in APOE4 carriers (p ≤ 0.005). There was a lack of an independent genotype effect on any of the lipid measures. In the groups combined, dietary fat manipulation had a significant impact on lipids in plasma and Svedberg flotation rate (Sf) 60–400 TAG-rich lipoprotein fraction, with lower responses following the HSF-DHA than HSF intervention (p < 0.05). Conclusion: Although a modest impact of APOE genotype was observed on the plasma TAG profile, dietary fat manipulation emerged as a greater modulator of the postprandial lipid response in normolipidaemic men.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Volatile anesthetics such as isoflurane and halothane have been in clinical use for many years and represent the group of drugs most commonly used to maintain general anesthesia. However, despite their widespread use, the molecular mechanisms by which these drugs exert their effects are not completely understood. Recently, a seemingly paradoxical effect of general anesthetics has been identified: the activation of peripheral nociceptors by irritant anesthetics. This mechanism may explain the hyperalgesic actions of inhaled anesthetics and their adverse effects in the airways. METHODS: To test the hypothesis that irritant inhaled anesthetics activate the excitatory ion-channel transient receptor potential (TRP)-A1 and thereby contribute to hyperalgesia and irritant airway effects, we used the measurement of intracellular calcium concentration in isolated cells in culture. For our functional experiments, we used models of isolated guinea pig bronchi to measure bronchoconstriction and withdrawal threshold to mechanical stimulation with von Frey filaments in mice. RESULTS: Irritant inhaled anesthetics activate TRPA1 expressed in human embryonic kidney cells and in nociceptive neurons. Isoflurane induces mechanical hyperalgesia in mice by a TRPA1-dependent mechanism. Isoflurane also induces TRPA1-dependent constriction of isolated bronchi. Nonirritant anesthetics do not activate TRPA1 and fail to produce hyperalgesia and bronchial constriction. CONCLUSIONS: General anesthetics induce a reversible loss of consciousness and render the patient unresponsive to painful stimuli. However, they also produce excitatory effects such as airway irritation and they contribute to postoperative pain. Activation of TRPA1 may contribute to these adverse effects, a hypothesis that remains to be tested in the clinical setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The A1 variant protein of the β-casein family has been implicated in various disease states although much evidence is weak or contradictory. The primary objective was to measure, for the first time, the proportions of the key β-casein variant proteins in UK retail milk over the course of one year. In total, 55 samples of semi-skimmed milk were purchased from five supermarkets over the course of a year and the proportions of the A1, A2, B and C casein variant proteins were measured, using high resolution HPLC-MS. The results showed that β-casein in UK retail milk comprises approximately 0.58, 0.31, 0.07 and 0.03 A2, A1, B and C protein variants, respectively. The proportion of A2 is higher than some early studies would predict although the reasons for this and any implications for health are unclear

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms of pancreatic pain, a cardinal symptom of pancreatitis, are unknown. Proinflammatory agents that activate transient receptor potential (TRP) channels in nociceptive neurons can cause neurogenic inflammation and pain. We report a major role for TRPV4, which detects osmotic pressure and arachidonic acid metabolites, and TRPA1, which responds to 4-hydroxynonenal and cyclopentenone prostaglandins, in pancreatic inflammation and pain in mice. Immunoreactive TRPV4 and TRPA1 were detected in pancreatic nerve fibers and in dorsal root ganglia neurons innervating the pancreas, which were identified by retrograde tracing. Agonists of TRPV4 and TRPA1 increased intracellular Ca(2+) concentration ([Ca(2+)](i)) in these neurons in culture, and neurons also responded to the TRPV1 agonist capsaicin and are thus nociceptors. Intraductal injection of TRPV4 and TRPA1 agonists increased c-Fos expression in spinal neurons, indicative of nociceptor activation, and intraductal TRPA1 agonists also caused pancreatic inflammation. The effects of TRPV4 and TRPA1 agonists on [Ca(2+)](i), pain and inflammation were markedly diminished or abolished in trpv4 and trpa1 knockout mice. The secretagogue cerulein induced pancreatitis, c-Fos expression in spinal neurons, and pain behavior in wild-type mice. Deletion of trpv4 or trpa1 suppressed c-Fos expression and pain behavior, and deletion of trpa1 attenuated pancreatitis. Thus TRPV4 and TRPA1 contribute to pancreatic pain, and TRPA1 also mediates pancreatic inflammation. Our results provide new information about the contributions of TRPV4 and TRPA1 to inflammatory pain and suggest that channel antagonists are an effective therapy for pancreatitis, when multiple proinflammatory agents are generated that can activate and sensitize these channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apolipoprotein E (APOE) genotype is believed to play an important role in cardiovascular risk. APOE4 carriers have been associated with higher blood lipid levels and a more pro-inflammatory state compared with APOE3/E3 individuals. Although dietary fat composition has been considered to modulate the inflammatory state in humans, very little is known about how APOE genotype can impact on this response. In a follow-up to the main SATgene study, we aimed to explore the effects of APOE genotype, as well as, dietary fat manipulation on ex vivo cytokine production. Blood samples were collected from a subset of SATgene participants (n = 52/88), prospectively recruited according to APOE genotype (n = 26 E3/E3 and n = 26 E3/E4) after low-fat (LF), high saturated fat (HSF) and HSF with 3.45 g docosahexaenoic acid (DHA) dietary periods (each diet eight weeks in duration assigned in the same order) for the measurement of ex vivo cytokine production using whole blood culture (WBC). Concentrations of IL-1beta, IL-6, IL-8, IL-10 and TNF-alpha were measured in WBC supernatant samples after stimulation for 24 h with either 0.05 or 1 lg/ml of bacterial lipopolysaccharide (LPS). Cytokine levels were not influenced by genotype, whereas, dietary fat manipulation had a significant impact on TNF-a and IL-10 production; TNF-a concentration was higher after consumption of the HSF diet compared with baseline and the LF diet (P < 0.05), whereas, IL-10 concentration was higher after the LF diet compared with baseline (P < 0.05). In conclusion, our study has revealed the amount and type of dietary fat can significantly modulate the production of TNF-a and IL-10 by ex vivo LPS-stimulated WBC samples obtained from normolipidaemic subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: We have previously demonstrated that carrying the apolipoprotein (apo) E epsilon 4 (E4+) genotype disrupts omega-3 fatty acids (n − 3 PUFA) metabolism. Here we hypothesise that the postprandial clearance of n − 3 PUFA from the circulation is faster in E4+ compared to non-carriers (E4−). The objective of the study was to investigate the fasted and postprandial fatty acid (FA) profile of triacylglycerol-rich lipoprotein (TRL) fractions: Sf >400 (predominately chylomicron CM), Sf 60 − 400 (VLDL1), and Sf 20 − 60 (VLDL2) according to APOE genotype. Methods: Postprandial TRL fractions were obtained in 11 E4+ (ε3/ε4) and 12 E4− (ε3/ε3) male from the SATgenε study following high saturated fat diet + 3.45 g/d of docosahexaenoic acid (DHA) for 8-wk. Blood samples were taken at fasting and 5-h after consuming a test-meal representative of the dietary intervention. FA were characterized by gas chromatography. Results: At fasting, there was a 2-fold higher ratio of eicosapentaenoic acid (EPA) to arachidonic acid (P = 0.046) as well as a trend towards higher relative% of EPA (P=0.063) in theSf >400 fraction of E4+. Total n − 3 PUFA in the Sf 60 − 400 and Sf 20 − 60 fractions were not APOE genotype dependant. At 5 h, there was a trend towards a time × genotype interaction (P=0.081) for EPA in theSf >400 fraction. When sub-groups were form based on the level of EPA at baseline within the Sf >400 fraction, postprandial EPA (%) was significantly reduced only in the high-EPA group. EPA at baseline significantly predicted the postprandial response in EPA only in E4+ subjects (R2 = 0.816). Conclusion: Despite the DHA supplement contain very low levels of EPA, E4+ subjects with high EPA at fasting potentially have disrupted postprandial n − 3 PUFA metabolism after receiving a high-dose of DHA. Trial registration: Registered at clinicaltrials.gov/show/NCT01544855.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND:Apolioprotein E (APOE) genotype is reported to influence a person's fasting lipid profile and potentially the response to dietary fat manipulation. The impact of APOE genotype on the responsiveness to meals of varying fat composition is unknown. OBJECTIVE:We examined the effect of meals containing 50 g of fat rich in saturated fatty acids (SFAs), unsaturated fatty acids (UNSATs), or SFAs with fish oil (SFA-FO) on postprandial lipemia. METHOD:A randomized, controlled, test meal study was performed in men recruited according to the APOE genotype (n = 10 APOE3/3, n = 11 APOE3/E4). RESULTS:For the serum apoE response (meal × genotype interaction P = 0.038), concentrations were on average 8% lower after the UNSAT than the SFA-FO meal in APOE4 carriers (P = 0.015) only. In the genotype groups combined, there was a delay in the time to reach maximum triacylglycerol (TG) concentration (mean ± SEM: 313 ± 25 vs. 266 ± 27 min) and higher maximum nonesterified fatty acid (0.73 ± 0.05 vs. 0.60 ± 0.03 mmol/L) and glucose (7.92 ± 0.22 vs. 7.25 ± 0.22 mmol/L) concentrations after the SFA than the UNSAT meal, respectively (P ≤ 0.05). In the Svedberg flotation rate 60-400 TG-rich lipoprotein fraction, meal × genotype interactions were observed for incremental area under the curve (IAUC) for the TG (P = 0.038) and apoE (P = 0.016) responses with a 58% lower apoE IAUC after the UNSAT than the SFA meal (P = 0.017) in the E4 carriers. CONCLUSIONS:Our data indicate that APOE genotype had a modest impact on the postprandial response to meals of varying fat composition in normolipidemic men. The physiologic importance of greater apoE concentrations after the SFA-rich meals in APOE4 carriers may reflect an impact on TG-rich lipoprotein clearance from the circulation. This trial was registered at clinicaltrials.gov as NCT01522482.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of a designed bioactive lipopeptide C16-GGGRGDS, comprising a hexadecyl lipid chain attached to a functional heptapeptide, with the lipid-free apoliprotein, Apo-AI, is examined. This apolipoprotein is a major component of high density lipoprotein and it is involved in lipid metabolism and may serve as a biomarker for cardiovascular disease and Alzheimers’ disease. We find via isothermal titration calorimetry that binding between the lipopeptide and Apo-AI occurs up to a saturation condition, just above equimolar for a 10.7 μM concentration of Apo-AI. A similar value is obtained from circular dichroism spectroscopy, which probes the reduction in α-helical secondary structure of Apo-AI upon addition of C16-GGGRGDS. Electron microscopy images show a persistence of fibrillar structures due to self-assembly of C16-GGGRGDS in mixtures with Apo-AI above the saturation binding condition. A small fraction of spheroidal or possibly “nanodisc” structures was observed. Small-angle X-ray scattering (SAXS) data for Apo-AI can be fitted using a published crystal structure of the Apo-AI dimer. The SAXS data for the lipopeptide/ Apo-AI mixtures above the saturation binding conditions can be fitted to the contribution from fibrillar structures coexisting with flat discs corresponding to Apo-AI/lipopeptide aggregates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within target T lymphocytes, human immunodeficiency virus type I (HIV-1) encounters the retroviral restriction factor APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G; A3G), which is counteracted by the HIV-1 accessory protein Vif. Vif is encoded by intron-containing viral RNAs that are generated by splicing at 3' splice site (3'ss) A1 but lack splicing at 5'ss D2, which results in the retention of a large downstream intron. Hence, the extents of activation of 3'ss A1 and repression of D2, respectively, determine the levels of vif mRNA and thus the ability to evade A3G-mediated antiviral effects. The use of 3'ss A1 can be enhanced or repressed by splicing regulatory elements that control the recognition of downstream 5'ss D2. Here we show that an intronic G run (G(I2)-1) represses the use of a second 5'ss, termed D2b, that is embedded within intron 2 and, as determined by RNA deep-sequencing analysis, is normally inefficiently used. Mutations of G(I2)-1 and activation of D2b led to the generation of transcripts coding for Gp41 and Rev protein isoforms but primarily led to considerable upregulation of vif mRNA expression. We further demonstrate, however, that higher levels of Vif protein are actually detrimental to viral replication in A3G-expressing T cell lines but not in A3G-deficient cells. These observations suggest that an appropriate ratio of Vif-to-A3G protein levels is required for optimal virus replication and that part of Vif level regulation is effected by the novel G run identified here.