60 resultados para antimicrobial peptides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pro-opiomelanocortin (POMC)-derived peptides, pro-gamma-MSH (16K fragment), and Lys-gamma(3)-MSH, have been shown to potentiate the steroidogenic action of corticotrophin (ACTH) on the adrenal cortex. Using a continuously perfused adrenal cell column system, we have tested the hypothesis that gamma-MSH peptides exert their effect through the Melanocortin 3 Receptor (MC3-R), since this is the only known receptor to have high affinity for gamma-MSH peptides and has been suggested to be expressed in the rat adrenal. To investigate this hypothesis we tested whether the MC3-R agonist MTII and antagonist SHU9119 could mimic or block the actions of pro-gamma-MSH. We found that MTII could not mimic, and SHU9119 could not block pro-gamma-MSH mediated potentiation of ACTH-induced steroidogenesis. These results suggest that the MC3-R is not involved in mediating the potentiation effect, adding further evidence to the argument that another melanocortin receptor exists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of savory peptides in moromi has been investigated. Moromi was prepared by fermenting yellow soybean using Aspergillus oryzae as the starter at the first step (mold fermentation) and 20% brine solution at the next step (brine fermentation). The moromi was then ultrafiltered stepwise using membranes with MW cut-offs of 10,000, 3,000, and 500 Da, respectively. The fraction with MW < 500 Da was chromatographed using Sephadex G-25 SF to yield four fractions, 1-4. Analysis of soluble peptides, NaCl content, alpha-amino nitrogen, amino acid composition, peptide profile using CE coupled with DAD, taste profile and free glutamic acid content, were performed for each fraction. Fraction 2 contained a relatively high total glutamic acid content, but a relatively low free glutamic acid content and had the highest umami taste. This fraction also had more peptides containing non-aromatic amino acids than the other fractions. The peptides present in fraction 2 may play a role, at least in part, in its intense umami taste.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four terminally blocked tripeptides containing delta-aminovaleric acid residue self-assemble to form supramolecular beta-sheet structures as are revealed from their FT-IR data. Single crystal X-ray diffraction studies of two representative peptides also show that they form parallel beta-sheet structures. Self-aggregation of these beta-sheet forming peptides leads to the formation of fibrillar structures, as is evident from scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images. These peptide fibrils bind to a physiological dye, Congo red and exhibit a typical green-gold birefringence under polarized light, showing close resemblance to neurodegenerative disease causing amyloid fibrils. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potent angiotensin l-converting enzyme (ACE) inhibitory peptide mixtures were obtained from the hydrolysis of beta-lactoglobulin (beta Lg) using Protease N Amano, a food-grade commercial proteolytic preparation. Hydrolysis experiments were carried out for 8 h at two different temperatures and neutral pH. Based on their ACE inhibitory activity, samples of 6 h of digestion were chosen for further analysis. The temperature used for the hydrolysis had a marked influence on the type of peptides produced and their concentration in the hydrolysate. Protease N Amano was found to produce very complex peptide mixtures; however, the partially fractionated hydrolysates had already very potent ACE inhibitory activity. The novel heptapeptide SAPLRVY was isolated and characterised. It corresponded to beta Lg f(36-42) and had an IC50 value of 8 mu m, which is considerably lower than the most potent ACE inhibitory peptides derived from bovine beta Lg reported so far. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to study the effects of drying methods and conditions (i.e., ambient drying, hot air drying at 40 degrees C, vacuum drying and low-pressure superheated steam drying within the temperature range of 70-90 degrees C at an absolute pressure of 10 kPa) as well as the concentration of galangal extract on the antimicrobial activity of edible chitosan films against Staphylococcus aureus. Galangal extract was added to the film forming solution as a natural antimicrobial agent in the concentration range of 0.3-0.9 g/100 g. Fourier transform infrared (FTIR) spectra and swelling of the films were also evaluated to investigate interaction between chitosan and the galangal extract. The antimicrobial activity of the films was evaluated by the disc diffusion and viable cell count method, while the morphology of bacteria treated with the antimicrobial films was observed via transmission electron microscopy (TEM). The antimicrobial activity, swelling and functional group interaction of the antimicrobial films were found to be affected by the drying methods and conditions as well as the concentration of the galangal extract. The electron microscopic observations revealed that cell wall and cell membrane of S. aureus treated by the antimicrobial films were significantly damaged. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tea polyphenols, especially the catechins, are potent antimicrobial and antioxidant agents, with positive effects on human health. White tea is one of the less studied teas but the flavour is more accepted than that of green tea in Europe. The concentrations of various catechins in 13 different kinds of infusion were determined by capillary electrophoresis. The total polyphenol content (Folin-Ciocalteu method), the trolox equivalent antioxidant capacity (TEAC value determined with the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation) and the inhibitory effects of infusions on the growth of some microorganisms were determined. Five different infusions (black, white, green and red teas and rooibos infusion) were added to a model food system, comprising a sunflower oil-in-water emulsion containing 0% or 0.2% bovine serum albumin (BSA), and the oxidative stability was studied during storage at 37 degrees C. Oxidation of the oil was monitored by determination of the peroxide value. The highest radical-scavenging activity observed was for the green and white teas. Emulsions containing these extracts from these teas were much more stable during storage when BSA was present than when it was not present, even though BSA itself did not provide an antioxidant effect (at 0.2% concentration). Rooibos infusion did not show the same synergy with BSA. Green tea and white tea showed similar inhibitions of several microorganisms and the magnitude of this was comparable to that of the commercial infusion 2 (C.I.2), "te de la belleza". This tea also had an antioxidant activity comparable to green tea. (C) 2007 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antioxidant properties in food are dependent on various parameters. These include the pH value and interactions with food components, including proteins or metal ions. food components affect antioxidant stability and also influence the properties of microorganisms and their viability. This paper describes an investigation of the effect of pH on the antioxidant and antibacterial properties of caffeic acid in different media. The pH values studied, using an oil-in-water emulsion as model system, were 3, 5 (with and without phosphate buffer), and 9. Effects of mixtures of caffeic acid, bovine serum albumin (BSA), and Fe (III) on oxidative deterioration in the emulsion samples were studied. The results show that the antioxidant activity of caffeic acid was increased by the presence of BSA. This effect was pH dependent and was affected by the presence of iron Ions. Antibacterial properties were also pH dependent. The minimum concentration of caffeic acid required to inhibit some microorganisms in the pH range of 5 to 7 was determined. A concentration of 0.41% (w/w) caffeic acid was enough to inhibit the growth of some of the studied microorganisms in the pH range of 5 to 7. However, near-neutral pH concentrations higher than 0.4% were needed to inhibit some microorganisms, including Listeria monocytogenes, E. coli, and Staphylococcus aureus, in the medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic plasma concentrations of gut peptides. The experimental design was a randomized block design with repeated measurements. Cows were assigned to one of 2 treatments: control or infusion of 1,500 g of glucose/d into the abomasum from the day of parturition to 29 d in milk. Cows were sampled 12 ± 6 d prepartum and at 4, 15, and 29 d in milk. Concentrations of glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1(7–36) amide, and oxyntomodulin were measured in pooled samples within cow and sampling day, whereas active ghrelin was measured in samples obtained 30 min before and after feeding at 0800 h. Postpartum, dry matter intake increased at a lower rate with infusion compared with the control. Arterial, portal venous, and hepatic venous plasma concentrations of the measured gut peptides were unaffected by abomasal glucose infusion. The arterial, portal venous, and hepatic venous plasma concentrations of glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1(7–36) amide increased linearly from 12 d prepartum to 29 d postpartum. Plasma concentrations of oxyntomodulin were unaffected by day relative to parturition. Arterial and portal venous plasma concentrations of ghrelin were lower postfeeding compared with prefeeding concentrations. Arterial plasma concentrations of ghrelin were greatest prepartum and lowest at 4 d postpartum, giving a quadratic pattern of change over the transition period. Positive portal venous-arterial and hepatic venous–arterial concentration differences were observed for glucagon-like peptide 1(7–36) amide. A negative portal venous–arterial concentration difference was observed for ghrelin pre-feeding. The remaining portal venous–arterial and hepatic venous–arterial concentration differences of gut peptides did not differ from zero. In conclusion, increased postruminal glucose supply to postpartum transition dairy cows reduced feed intake relative to control cows, but did not affect arterial, portal venous, or hepatic venous plasma concentrations of gut peptide hormones. Instead, gut peptide plasma concentrations increased as lactation progressed. Thus, the lower feed intake of postpartum dairy cows receiving abomasal glucose infusion was not attributable to changes in gut peptide concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembly of tripeptides based on the RGD cell adhesion motif is investigated. Two tripeptides containing the Fmoc [N-(fluorenyl)-9-methoxycarbonyl] aromatic unit were synthesized, Fmoc-RGD and a control peptide containing a scrambled sequence, Fmoc-GRD. The Fmoc is used to control selfassembly via aromatic stacking interactions. The self-assembly and hydrogelation properties of the two Fmoc-tripeptides are compared. Both form well defined amyloid fibrils (as shown by cryo-TEM and SAXS) with b-sheet features in their circular dichroism and FTIR spectra. Both peptides form selfsupporting hydrogels, the dynamic shear modulus of which was measured. Preliminary cell culture experiments reveal that Fmoc-RGD can be used as a support for bovine fibroblasts, but not Fmoc- GRD, consistent with the incorporation of the cell adhesion motif in the former peptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembly of amphiphilic peptides is reviewed. The review covers surfactant-like peptides with amphiphilicity arising from the sequence of natural amino acids, and also peptide amphiphiles (PAs) in which lipid chains are attached to hydrophilic peptide sequences containing charged residues. The influence of the secondary structure on the self-assembled structure and vice versa is discussed. For surfactant-like peptides structures including fibrils, nanotubes, micelles and vesicles have been reported. A particularly common motif for PAs is beta-sheet based fibrils, although other structures have been observed. In these structures, the peptide epitope is presented at the surface of the nanostructure, providing remarkable bioactivity. Recent discoveries of potential, and actual, applications of these materials in biomedicine and bionanotechnology are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Modulation of presynaptic voltage-dependent Ca+ channels is a major means of controlling neurotransmitter release. The CaV 2.2 Ca2+ channel subunit contains several inhibitory interaction sites for Gβγ subunits, including the amino terminal (NT) and I–II loop. The NT and I–II loop have also been proposed to undergo a G protein-gated inhibitory interaction, whilst the NT itself has also been proposed to suppress CaV 2 channel activity. Here, we investigate the effects of an amino terminal (CaV 2.2[45–55]) ‘NT peptide’ and a I–II loop alpha interaction domain (CaV 2.2[377–393]) ‘AID peptide’ on synaptic transmission, Ca2+ channel activity and G protein modulation in superior cervical ganglion neurones (SCGNs). Presynaptic injection of NT or AID peptide into SCGN synapses inhibited synaptic transmission and also attenuated noradrenaline-induced G protein modulation. In isolated SCGNs, NT and AID peptides reduced whole-cell Ca2+ current amplitude, modified voltage dependence of Ca2+ channel activation and attenuated noradrenaline-induced G protein modulation. Co-application of NT and AID peptide negated inhibitory actions. Together, these data favour direct peptide interaction with presynaptic Ca2+ channels, with effects on current amplitude and gating representing likely mechanisms responsible for inhibition of synaptic transmission. Mutations to residues reported as determinants of Ca2+ channel function within the NT peptide negated inhibitory effects on synaptic transmission, Ca2+ current amplitude and gating and G protein modulation. A mutation within the proposed QXXER motif for G protein modulation did not abolish inhibitory effects of the AID peptide. This study suggests that the CaV 2.2 amino terminal and I–II loop contribute molecular determinants for Ca2+ channel function; the data favour a direct interaction of peptides with Ca2+ channels to inhibit synaptic transmission and attenuate G protein modulation. Non-technical summary: Nerve cells (neurones) in the body communicate with each other by releasing chemicals (neurotransmitters) which act on proteins called receptors. An important group of receptors (called G protein coupled receptors, GPCRs) regulate the release of neurotransmitters by an action on the ion channels that let calcium into the cell. Here, we show for the first time that small peptides based on specific regions of calcium ion channels involved in GPCR signalling can themselves inhibit nerve cell communication. We show that these peptides act directly on calcium channels to make them more difficult to open and thus reduce calcium influx into native neurones. These peptides also reduce GPCR-mediated signalling. This work is important in increasing our knowledge about modulation of the calcium ion channel protein; such knowledge may help in the development of drugs to prevent signalling in pathways such as those involved in pain perception.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The indolines and thionins are basic, amphiphilic and cysteine-rich proteins found in cereals; puroindoline-a (Pin-a) and β-purothionin (β-Pth) are members of these families in wheat (Triticum aestivum). Pin-a and β-Pth have been suggested to play a significant role in seed defence against microbial pathogens, making the interaction of these proteins with model bacterial membranes an area of potential interest. We have examined the binding of these proteins to lipid monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) using a combination of neutron reflectometry, Brewster angle microscopy, and infrared spectroscopy. Results showed that both Pin-a and β-Pth interact strongly with condensed phase DPPG monolayers, but the degree of penetration was different. β-Pth was shown to penetrate the lipid acyl chain region of the monolayer and remove lipids from the air/liquid interface during the adsorption process, suggesting this protein may be able to both form membrane spanning ion channels and remove membrane phospholipids in its lytic activity. Conversely, Pin-a was shown to interact mainly with the head-group region of the condensed phase DPPG monolayer and form a 33 Å thick layer below the lipid film. The differences between the interfacial structures formed by these two proteins may be related to the differing composition of the Pin-a and β-Pth hydrophobic regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of heptapeptides comprising the core sequence Ab(16–20), KLVFF, of the amyloid b peptide coupled with paired N-terminal c-amino acids are investigated in terms of cytotoxicity reduction and binding to the full Ab peptide, both pointing to inhibition of fibrillisation for selected compounds. This is related to the self-assembly capacity of the heptapeptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, probiotic fermented milk products have raised interest regarding their potential anti-hypertensive activity mainly due to the production of angiotensin-I-converting enzyme (ACE) inhibitory peptides. Ionic calcium released upon milk acidification during fermentation is also known to exert hypotensive activity. Thus, the main aim of this study was to screen probiotic strains for their ability to induce ACE-inhibitory activity upon fermentation of milk. The relationship of ACE-inhibitory activity percentage (ACEi%) with cell growth, pH, degree of hydrolysis and the concentration of ionic calcium released during the fermentation was also investigated. Compared with other lactic acid bacteria, Lactobacillus casei YIT 9029 and Bifidobacterium bifidum MF 20/5 were able to induce strong ACE-inhibitory activity. Furthermore, it was found that the ionic calcium released during milk fermentation could contribute to the ACE-inhibitory activity. These findings will contribute to the development of new probiotic dairy products with anti-hypertensive activity.