52 resultados para anoxic lake
Resumo:
High rates of nutrient loading from agricultural and urban development have resulted in surface water eutrophication and groundwater contamination in regions of Ontario. In Lake Simcoe (Ontario, Canada), anthropogenic nutrient contributions have contributed to increased algal growth, low hypolimnetic oxygen concentrations, and impaired fish reproduction. An ambitious programme has been initiated to reduce phosphorus loads to the lake, aiming to achieve at least a 40% reduction in phosphorus loads by 2045. Achievement of this target necessitates effective remediation strategies, which will rely upon an improved understanding of controls on nutrient export from tributaries of Lake Simcoe as well as improved understanding of the importance of phosphorus cycling within the lake. In this paper, we describe a new model structure for the integrated dynamic and process-based model INCA-P, which allows fully-distributed applications, suited to branched river networks. We demonstrate application of this model to the Black River, a tributary of Lake Simcoe, and use INCA-P to simulate the fluxes of P entering the lake system, apportion phosphorus among different sources in the catchment, and explore future scenarios of land-use change and nutrient management to identify high priority sites for implementation of watershed best management practises.
Resumo:
Breast milk fatty acid composition may be affected by maternal diet during gestation and lactation. The influence of dietary and breast milk fatty acids on breast milk immune factors is poorly defined. We determined the fatty acid composition and immune factor concentrations of breast milk from women residing in river & lake, coastal, and inland regions of China, which differ in their consumption of lean fish and oily fish. Breast milk samples were collected on days 3 to 5 (colostrum), 14 and 28 post-partum and analysed for soluble CD14 (sCD14), transforming growth factor (TGF)-β1, TGF-β2, secretory immunoglobulin A (sIgA) and fatty acids. The fatty acid composition of breast milk differed between regions and with time post-partum. The concentrations of all four immune factors in breast milk decreased over time, with sCD14, sIgA and TGF-β1 being highest in colostrum in the river & lake region. Breast milk DHA and arachidonic acid (AA) were positively associated, and γ-linolenic acid and EPA negatively associated, with the concentrations of each of the four immune factors. In conclusion, breast milk fatty acids and immune factors differ between regions in China characterised by different patterns of fish consumption and change during the course of lactation. A higher breast milk DHA and AA concentration is associated with higher concentrations of immune factors in breast milk, suggesting a role for these fatty acids in promoting gastrointestinal and immune maturation of the infant.
Resumo:
Sustainable lake management for nutrient-enriched lakes must be underpinned by an understanding of both the functioning of the lake, and the origins of changes in nutrient loading from the catchment. To date, limnologists have tended to focus on studying the impact of nutrient enrichment on the lake biota, and the dynamics of nutrient cycling between the water column, biota and sediments within the lake. Relatively less attention has been paid to understanding the specific origins of nutrient loading from the catchment and nutrient transport pathways linking the lake to its catchment. As such, when devising catchment management strategies to reduce nutrient loading on enriched lakes, assumptions have been made regarding the relative significance of non-point versus point sources in the catchment. These are not always supported by research conducted on catchment nutrient dynamics in other fields of freshwater science. Studies on nutrient enrichment in lakes need to take account of the history of catchment use and management specific to each lake in order to devise targeted and sustainable management strategies to reduce nutrient loading to enriched lakes. Here a modelling approach which allows quantification of the relative contribution of nutrients from each specific point and non-point catchment source over the course of catchment history is presented. The approach has been applied to three contrasting catchments in the U.K. for the period 1931 to present. These are the catchment of Slapton Ley in south Devon, the River Esk in Cumbria and the Deben Estuary in Suffolk. Each catchment showed marked variations in the nature and intensity of land use and management. The model output quantifies the relative importance of point source versus non-point livestock and land use sources in each of the catchments, and demonstrates the necessity for an understanding of site-specific catchment history in devising suitable management strategies for the reduction of nutrient loading on enriched lakes.
Resumo:
A detailed geochemical analysis was performed on the upper part of the Maiolica Formation in the Breggia (southern Switzerland) and Capriolo sections (northern Italy). The analysed sediments consist of well-bedded, partly siliceous, pelagic carbonate, which lodges numerous thin, dark and organic-rich layers. Stable-isotope, phosphorus, organic-carbon and a suite of redox-sensitive trace-element contents (RSTE: Mo, U, Co, V and As) were measured. The RSTE pattern and Corg:Ptot ratios indicate that most organic-rich layers were deposited under dysaerobic rather than anaerobic conditions and that latter conditions were likely restricted to short intervals in the latest Hauterivian, the early Barremian and the pre-Selli early Aptian. Correlations are both possible with organic-rich intervals in central Italy (the Gorgo a Cerbara section) and the Boreal Lower Saxony Basin, as well as with the facies and drowning pattern in the Helvetic segment of the northern Tethyan carbonate platform. Our data and correlations suggest that the latest Hauterivian witnessed the progressive installation of dysaerobic conditions in the Tethys, which went along with the onset in sediment condensation, phosphogenesis and platform drowning on the northern Tethyan margin, and which culminated in the Faraoni anoxic episode. This episode is followed by further episodes of dysaerobic conditions in the Tethys and the Lower Saxony Basin, which became more frequent and progressively stronger in the late early Barremian. Platform drowning persisted and did not halt before the latest early Barremian. The late Barremian witnessed diminishing frequencies and intensities in dysaerobic conditions, which went along with the progressive installation of the Urgonian carbonate platform. Near the Barremian-Aptian boundary, the increasing density in dysaerobic episodes in the Tethyan and Lower Saxony Basins is paralleled by a change towards heterozoan carbonate production on the northern Tethyan shelf. The following return to more oxygenated conditions is correlated with the second phase of Urgonian platform growth and the period immediately preceding and corresponding to the Selli anoxic episode is characterised by renewed platform drowning and the change to heterozoan carbonate production. Changes towards more humid climate conditions were the likely cause for the repetitive installation of dys- to anaerobic conditions in the Tethyan and Boreal basins and the accompanying changes in the evolution of the carbonate platform towards heterozoan carbonate-producing ecosystems and platform drowning.
Resumo:
During Oceanic Anoxic Event 1a (OAE 1a, 120 Ma; Li et al., 2008), organic carbon-rich layers were deposited in marine environments under anoxic conditions on a global scale. In this study, palaeoenvironmental conditions leading to this event are characterised by studying the Upper Barremian to the Lower Aptian succession of the Gorgo a Cerbara section (central Italy). For this, an integrated multi-proxy approach (δ13Ccarb; δ13Corg; δ18O; phosphorus; Total Organic Carbon, TOC; bulk-rock mineralogy, as well as redox-sensitive trace elements — RSTEs) has been applied. During the LateBarremian, thin organic-rich layers occur episodically, and associated Corg:Ptot ratios indicate the presence of intermittent dysoxic to anoxic conditions. Coarse correlations are observed between TOC, P and biogenic silica contents, indicating links between P availability, productivity, and TOC preservation. However, the corresponding δ13Ccarb and δ18O records remain quite stable, indicating that these brief periods of enhanced TOC preservation did not have sufficient impact on the marine carbon reservoir to deviate δ13C records. Around the Barremian–Aptian boundary, TOC-enriched layers become more frequent. These layers correlate with negative excursions in the δ13Ccarb and δ13Corg records, possibly due to a warming period as indicated by the δ18O record. During the earliest Aptian, this warming trend is reverted into a cooling trend, which is then followed by an important warming step near the onset of Oceanic Anoxic Event 1a (OAE 1a). During this time period, organic-rich intervals occur, which are characterised by the progressive increase in RSTE. The warming step prior the onset of OAE 1a is associated with the well-known negative spike in δ13Ccarb and δ13Corg records, an important peak in P accumulation, RSTE enrichments and Corg:Ptot ratios indicating the prevalence of anoxic conditions. The Selli Level itself may document a cooling phase. RSTE enrichments and Corg:Ptot ratios confirm the importance of anoxic conditions during OAE 1a at this site. The Gorgo a Cerbara section is interpreted to reflect the progressive impact of palaeoenvironmental change related to the formation of the Ontong-Java plate-basalt plateau, which started already around the Barremian–Aptian boundary and culminated into OAE 1a.
Resumo:
Upper Cenomanian pelagic sediments from the northern Alpine Helvetic fold-and-thrust belt (northern Tethyan margin) coeval with Oceanic Anoxic Event (OAE) 2 are characterized by the temporal persistence of micrite sedimentation and lack of organic carbon-rich layers. We studied an expanded section in the Chrummflueschlucht (east of Euthal, Switzerland), which encompasses the OAE 2 time interval. In order to identify the paleoceanographic and paleoenvironmental conditions during OAE 2 in this part of the northern Tethyan margin, and more specifically to trace eventual changes in nutrient levels and oxic conditions, we investigated the biostratigraphy (planktonic foraminifera), the bulk-rock mineralogy, and measured stable carbon- and oxygen-isotopes, total phosphorus (P) and redox-sensitive trace-element (RSTE) contents. We were able to determine – with some remaining uncertainties – the different planktonic foraminiferal biozones characteristic of the Cenomanian–Turonian boundary interval (Rotalipora cushmani, Whiteinella archaeocretacea and Helvetoglobotruncana helvetica zones). In the lower part of the section (R. cushmani total range zone), the bulk-rock δ13C record shows a long-term increase. Within sediments attributed to the W. archaeocretacea partial range zone, δ13C values reach a maximum of 3.3‰ (peak “a”). In the following the values decrease and increase again to arrive at a plateau with high δ13C values of around 3.1‰, which ends with a peak of 3.3‰ (peak “c”). At the top of the section, in sediments belonging to the H. helvetica total range zone, δ13C values decrease to post-OAE values of around 2.2‰. The last occurrence of R. cushmani is observed just above the positive δ13C shift characterizing OAE 2. P contents display small variations along the section with a long-term decreasing trend towards the top. Before the OAE 2 interval, P values show higher values and relatively good covariation with detrital input, indicating higher nutrient input before OAE 2. In sediments corresponding to the onset of the δ13C positive excursion, P content is marked by a sharp peak probably linked to a slowdown in sedimentation rates and/or the presence of a small hiatus, as is shown by the presence of glauconite and phosphatic grains. In the interval corresponding to OAE 2, P values remain low and increase slightly at the end of the positive shift in the δ13C record (in the H. helvetica total range zone). The average contents of RSTE (U, V, As, Co, Mo and Mn) remain low throughout the section and appreciable RSTE enrichments have not been observed for the sedimentary interval corresponding to OAE 2. No correlation is observed with stratigraphic trends in RSTE contents in organic-rich deeper-water sections. The presence of double-keeled planktonic foraminifera species during most of the Cenomanian/Turonian boundary event is another evidence of relatively well-oxygenated conditions in this part of the northern Tethyan outer shelf. Our results show that the Chrummflueschlucht section corresponds to one of the most complete section for the Cenomanian–Turonian boundary interval known from the Helvetic realm even if a small hiatus may be present at the onset of the δ13C record (peak “a”). The evolution of P contents suggests an increase in input of this nutritive element at the onset of OAE2. However, the trends in RSTE contents and the planktonic foraminifera assemblages show that the Helvetic realm has not been affected by strongly depleted oxygen conditions during OAE 2.
Resumo:
Marine and terrestrial sediments of the Valanginian age display a distinct positive δ13C excursion, which has recently been interpreted as the expression of an oceanic anoxic episode (OAE) of global importance. Here we evaluate the extent of anaerobic conditions in marine bottom waters and explore the mechanisms involved in changing carbon storage on a global scale during this time interval. We asses redox-sensitive trace-element distributions (RSTE; uranium, vanadium, cobalt, arsenic and molybdenum) and the quality and quantity of preserved organic matter (OM) in representative sections along a shelf-basin transect in the western Tethys, in the Polish Basin and on Shatsky Rise. OM-rich layers corresponding in time to the δ13C shift are generally rare in the Tethyan sections and if present, the layers are not thicker than several centimetres and total organic carbon (TOC) contents do not surpass 1.68 wt..%. Palynological observations and geochemical properties of the preserved OM suggest a mixed marine and terrestrial origin and deposition in an oxic environment. In the Polish Basin, OM-rich layers show evidence for an important continental component. RSTE exhibit no major enrichments during the δ13C excursion in all studied Tethyan sections. RSTE enrichments are, however, observed in the pre-δ13C excursion OM-rich “Barrande” levels of the Vocontian Trough. In addition, all Tethyan sections record higher Mn contents during the δ13C shift, indicating rather well-oxygenated bottom waters in the western Tethys and the presence of anoxic basins elsewhere, such as the restricted basins of the North Atlantic and Weddell Sea. We propose that the Valanginian δ13C shift is the consequence of a combination of increased OM storage in marginal seas and on continents (as a sink of 12C-enriched organic carbon), coupled with the demise of shallow-water carbonate platforms (diminishing the storage capacity of 13C-enriched carbonate carbon). As such the Valanginian provides a more faithful natural analogue to present-day environmental change than most other Mesozoic OAEs, which are characterized by the development of ocean-wide dysaerobic to anaerobic conditions.
Resumo:
We explored the potential for using Pediastrum (Meyen), a genus of green alga commonly found in palaeoecological studies, as a proxy for lake-level change in tropical South America. The study site, Laguna La Gaiba (LLG) (17°45′S, 57°40′W), is a broad, shallow lake located along the course of the Paraguay River in the Pantanal, a 135,000-km2 tropical wetland located mostly in western Brazil, but extending into eastern Bolivia. Fourteen surface sediment samples were taken from LLG across a range of lake depths (2-5.2 m) and analyzed for Pediastrum. We found seven species, of which P. musteri (Tell et Mataloni), P. argentiniense (Bourr. et Tell), and P. cf. angulosum (Ehrenb.) ex Menegh. were identified as potential indicators of lake level. Results of the modern dataset were applied to 31 fossil Pediastrum assemblages spanning the early Holocene (12.0 kyr BP) to present to infer past lake level changes qualitatively. Early Holocene (12.0-9.8 kyr BP) assemblages do not show a clear signal, though abundance of P. simplex (Meyen) suggests relatively high lake levels. Absence of P. musteri, characteristic of deep, open water, and abundance of macrophyte-associated taxa indicate lake levels were lowest from 9.8 to 3.0 kyr BP. A shift to wetter conditions began at 4.4 kyr BP, indicated by the appearance of P. musteri, though inferred lake levels did not reach modern values until 1.4 kyr BP. The Pediastrum-inferred mid-Holocene lowstand is consistent with lower precipitation, previously inferred using pollen from this site, and is also in agreement with evidence for widespread drought in the South American tropics during the middle Holocene. An inference for steadily increasing lake level from 4.4 kyr BP to present is consistent with diatom-inferred water level rise at Lake Titicaca, and demonstrates coherence with the broad pattern of increasing monsoon strength from the late Holocene until present in tropical South America.
Resumo:
The extensive shoreline deposits of Lake Chilwa, southern Malawi, a shallow water body today covering 600 km2 of a basin of 7500 km2, are investigated for their record of late Quaternary highstands. OSL dating, applied to 36 samples from five sediment cores from the northern and western marginal sand ridges, reveal a highstand record spanning 44 ka. Using two different grouping methods, highstand phases are identified at 43.7–33.3 ka, 26.2–21.0 ka and 17.9–12.0 ka (total error method) or 38.4–35.5 ka, 24.3–22.3 ka, 16.2–15.1 ka and 13.5–12.7 ka (Finite Mixture Model age components) with two further discrete events recorded at 11.01 ± 0.76 ka and 8.52 ± 0.56 ka. Highstands are comparable to the timing of wet phases from other basins in East and southern Africa, demonstrating wet conditions in the region before the LGM, which was dry, and a wet Lateglacial, which commenced earlier in the southern compared to northern hemisphere in East Africa. We find no evidence that wet phases are insolation driven, but analysis of the dataset and GCM modelling experiments suggest that Heinrich events may be associated with enhanced monsoon activity in East Africa in both timing and as a possible causal mechanism.
Resumo:
Palaeodata in synthesis form are needed as benchmarks for the Palaeoclimate Modelling Intercomparison Project (PMIP). Advances since the last synthesis of terrestrial palaeodata from the last glacial maximum (LGM) call for a new evaluation, especially of data from the tropics. Here pollen, plant-macrofossil, lake-level, noble gas (from groundwater) and δ18O (from speleothems) data are compiled for 18±2 ka (14C), 32 °N–33 °S. The reliability of the data was evaluated using explicit criteria and some types of data were re-analysed using consistent methods in order to derive a set of mutually consistent palaeoclimate estimates of mean temperature of the coldest month (MTCO), mean annual temperature (MAT), plant available moisture (PAM) and runoff (P-E). Cold-month temperature (MAT) anomalies from plant data range from −1 to −2 K near sea level in Indonesia and the S Pacific, through −6 to −8 K at many high-elevation sites to −8 to −15 K in S China and the SE USA. MAT anomalies from groundwater or speleothems seem more uniform (−4 to −6 K), but the data are as yet sparse; a clear divergence between MAT and cold-month estimates from the same region is seen only in the SE USA, where cold-air advection is expected to have enhanced cooling in winter. Regression of all cold-month anomalies against site elevation yielded an estimated average cooling of −2.5 to −3 K at modern sea level, increasing to ≈−6 K by 3000 m. However, Neotropical sites showed larger than the average sea-level cooling (−5 to −6 K) and a non-significant elevation effect, whereas W and S Pacific sites showed much less sea-level cooling (−1 K) and a stronger elevation effect. These findings support the inference that tropical sea-surface temperatures (SSTs) were lower than the CLIMAP estimates, but they limit the plausible average tropical sea-surface cooling, and they support the existence of CLIMAP-like geographic patterns in SST anomalies. Trends of PAM and lake levels indicate wet LGM conditions in the W USA, and at the highest elevations, with generally dry conditions elsewhere. These results suggest a colder-than-present ocean surface producing a weaker hydrological cycle, more arid continents, and arguably steeper-than-present terrestrial lapse rates. Such linkages are supported by recent observations on freezing-level height and tropical SSTs; moreover, simulations of “greenhouse” and LGM climates point to several possible feedback processes by which low-level temperature anomalies might be amplified aloft.