37 resultados para anionic conductor


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism of action and properties of a solid-phase ligand library made of hexapeptides (combinatorial peptide ligand libraries or CPLL, for capturing the "hidden proteome", i.e. the low- and very low-abundance proteins Constituting the vast majority of species in any proteome. as applied to plant tissues, are reviewed here. Plant tissues are notoriously recalcitrant to protein extraction and to proteome analysis, Firstly, rigid plant cell walls need to be mechanically disrupted to release the cell content and, in addition to their poor protein yield, plant tissues are rich in proteases and oxidative enzymes, contain phenolic Compounds, starches, oils, pigments and secondary metabolites that massively contaminate protein extracts. In addition, complex matrices of polysaccharides, including large amount of anionic pectins, are present. All these species compete with the binding of proteins to the CPLL beads, impeding proper capture and identification I detection of low-abundance species. When properly pre-treated, plant tissue extracts are amenable to capture by the CPLL beads revealing thus many new species among them low-abundance proteins. Examples are given on the treatment of leaf proteins, of corn seed extracts and of exudate proteins (latex from Hevea brasiliensis). In all cases, the detection of unique gene products via CPLL Capture is at least twice that of control, untreated sample. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tetraprotonated form of the dioxatetraazamacrocycle, 6,19-dioxa-3,9,16,22-tetraaza[22.2.2.2(11,14)]-triaconta-1(26),11,13,24, 27,29-hexaene, (H4L1)(4+), was used as the receptor for binding studies with carboxylate anionic substrates of different shapes, sizes, and charges [succinate (suc(2-)), cyclo- hexanetricarboxylate (cta(3-)), phthalate (ph(2-)), isophthalate (iph(2-)), terephthalate (tph(2-)), and benezenetricarboxylate (btc(3-))]. Association constants were determined by potentiometry in aqueous solution at 298.2 K and 0.10 M KCl and by H-1 NMR titration in D2O. The strongest association was found for the btc3- anion at 5-7 pH region. From both techniques it was possible to establish the binding preference trend of the receptor for the different substrates, and the H-1 NMR spectroscopy gave important suggestions about the type of interactions between partners and the location of the substrates in the supramolecular entities formed. The effective binding constants at pH 6 follow the order: btc(3-)>iph(2-)>cta(3-) =ph(2-)>tph(2-)>suc(2-). All the studies suggest that the anionic substrates bind to the receptor via N-H center dot center dot center dot O = C hydrogen bonds and electrostatic interactions, and the aromatic substrates can also establish pi-pi stacking interactions. The crystal structures of (H4L1)(4+) and its supramolecular assemblies with ph(2-) and tph(2-) were determined by X-ray diffraction. The last two structures showed that the association process in solid state occurs via multiple N-H center dot center dot center dot O = C hydrogen bonds with the anionic substrate located outside the macrocyclic cavity of the receptor. Molecular dynamics simulations carried out for the association of (H4L1)(4+) with tph(2-) and btC(3-) in water solution established at atomic level the existence of all interactions suggested by the experimental studies, which act cooperatively in the binding process. Furthermore, the binding free energies were estimated and the values are in agreement with the experimental ones, indicating that the binding of these two anionic substrates occurs into the receptor cavity. However, the tph(2-) has also propensity to leave the macrocyclic cavity and its molecular recognition can also happen at the top of the receptor. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The confined crystallization of poly(ethylene oxide) (PEO) in predominantly spherical microdomains formed by several diblock copolymers was studied and compared. Two polybutadiene-b-poly(ethylene oxide) diblock copolymers were prepared by sequential anionic polymerization (with approximately 90 and 80 wt % polybutadiene (PB)). These were compared to equivalent samples after catalytic hydrogenation that produced double crystalline polyethylene-b-poly(ethylene oxide) diblock copolymers. Both systems are segregated into microdomains as indicated by small-angle X-ray scattering (SAXS) experiments performed in the melt and at lower temperatures. However, the PB-b-PEO systems exhibited a higher degree of order in the melt. A predominantly spherical morphology of PEO in a PB or a PE matrix was observed by both SAXS and transmission electron microscopy, although a possibly mixed morphology (spheres and cylinders) was formed when the PEO composition was close to the cylinder-sphere domain transitional composition as indicated by SAXS. Differential scanning calorimetry experiments showed that a fractionated crystallization process for the PEO occurred in all samples, indicating that the PE cannot nucleate PEO in these diblock copolymers. A novel result was the observation of a subsequent fractionated melting that reflected the crystallization process. Sequential isothermal crystallization experiments allowed us to thermally separate at least three different crystallization and melting peaks for the PEO microdomains. The lowest melting point fraction was the most important in terms of quantity and corresponded to the crystallization of isolated PEO spheres (or cylinders) that were either superficially or homogeneously nucleated. This was confirmed by Avrami index values of approximately 1. The isothermal crystallization results indicate that the PE matrix restricts the crystallization of the covalently bonded PEO to a higher degree compared to PB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gel diagrams based on tube inversion and oscillatory rheometry are reported for Pluronic copolymers F127 (E98P67E98) and P123 (E21P67E21) in mixtures with anionic surfactant sodium dodecyl sulfate (SDS). Total concentrations (e, SDS+copolymer) were as high as 50 wt% with mole ratios SDS/copolymer (mr) in the ranges 1-5 (F127) a lid 1-7 (PI 23). Temperatures were its high as 90 degrees C. Determination of the temperature dependences of the dynamic moduli served to confirm the gel boundaries from tube inversion and to reveal the high elastic moduli of the gels, e.g., compared at corn parable positions in the gel phase, a 50 wt% SDS/P123 wit h mr = 7 had G' three times that of a corresponding gel of P123 alone. Sin all-angle X-ray scattering (SAX S) was used to show that the structures of all the SDS/F127 gels were bee and that the structures of the SDS/P123 gels with mr = I were either fcc(c = 30 wt%) or hex (c = 40 wt%). Assignment of structures to SDS/P123 gels with values of mr in the range 3-7 was more difficult, as high-order scattering peaks Could be very weak, and at the higher values of c and mr, the SAXS peaks included multiple reflections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron attachment was studied in gaseous dinitrogen pentoxide, N2O5, for incident electron energies between a few meV and 10 eV. No stable parent anion N2O5- was observed but several anionic fragments (NO3-, NO2-, NO-, O-, and O-2(-)) were detected using quadrupole mass spectrometry. Many of these dissociative pathways were found to be coupled and provide detailed information on the dynamics of N2O5 fragmentation. Estimates of the cross sections for production of each of the anionic fragments were made and suggest that electron attachment to N2O5 is amongst the most efficient attachment reactions recorded for nonhalogenated polyatomic systems. (C) 2004 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A tetraazamacrocycle containing ferrocene moieties has been synthesized and characterized. The tetraprotonated form of this compound was evaluated as a receptor (R) for anion recognition of several substrates (S), Cl-, PF6-, HSO4-, H2PO4- and carboxylates, such as p-nitrobenzoate (p-nbz(-)), phthalate (ph(2-)), isophthalate (iph(2-)) and dipicolinate (dipic(2-)). H-1 NMR titrations in CD3OD indicated that this receptor is not suitable for recognizing HSO4- and H2PO4-, but weakly binds p-nbz(-), and strongly interacts with ph(2-), dipic(2-), and iph(2-) anions forming 1 : 2 assembled species. The largest beta(2) binding constant was determined for ph(2-), followed by dipic(2-) and finally iph(2-). The effect of the anionic substrates on the electron-transfer process of the ferrocene units of R was evaluated using cyclic voltammetry (CV) and square wave voltammetry (SWV) in methanol solution and 0.1 mol dm(-3) (CH3)(4)NCl as the supporting electrolyte. Titrations of the receptor were undertaken by addition of anion solutions in their tetrabutylammonium or tetramethylammonium forms. The protonated ligand exhibits a reversible voltammogram, which shifts cathodically in the presence of the substrates. The data revealed kinetic constraints in the formation of the receptor/substrate entity for dipic(2-), ph(2-) and iph(2-) anions, but not for p-nbz(-). In spite of the slow kinetics of assembled species formation with the ph(2-) substrate, this anion provides the largest redox-response when the supramolecular entity is formed, followed by dipic(2-), iph(2-) and finally p-nbz(-) anions. This trend is in agreement with the H-1 NMR results and the values of the binding constants. Single crystal X-ray structures of the receptor with PF6-, ph(2-), iph(2-) and p-nbz(-) were carried out and showed that supermolecules with a RS2 stoichiometry are formed with the first three anions, but RS4 with p-nbz(-). In all cases the binding occurs outside the macrocyclic cavity via N-H center dot center dot center dot O=C hydrogen bonds for carboxylate anions and N - H center dot center dot center dot F hydrogen bonds for the PF6- anion, which is in agreement with the solution results. The macrocyclic framework adopts different conformations in order to interact with each substrate having Fe center dot center dot center dot Fe intramolecular distances ranging from 10.125(14) to 12.783(15) angstrom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The title compound,{(C2H10N2)(2)[Mn(PO4)(2)]}(n), contains anionic square-twisted chains of formula [Mn(PO4)(2)](4-) constructed from corner-sharing four-membered rings of alternating MnO4 and PO4 units. The Mn and P atoms have distorted tetrahedral coordination and the Mn atom lies on a twofold axis. The linear manganese-phosphate chains are held together by hydrogen-bonding interactions involving the framework O atoms and the H atoms of the ethane-1,2-diammonium cations, which lie in the interchain spaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the title family, the ONO donor ligands are the acetylhydrazones of salicylaidehyde (H2L1) and 2-hydroxyacetophenone (H2L2) (general abbreviation, H2L). The reaction of bis(acetylacetonato)oxovanadium(IV) with a mixture of tridentate H2L and a bidentate NN donor [e.g., 2,2'-bipyridine(bpy) or 1,10-phenanthroline(phen), hereafter B] ligands in equimolar ratio afforded the tetravalent complexes of the type [(VO)-O-IV(L)(B)]; complexes (1)-(4) whereas, if B is replaced by 8-hydroxyquinoline(Hhq) (which is a bidentate ON donor ligand), the above reaction mixture yielded the pentavalent complexes of the type [(VO)-O-V(L)(hq)]; complexes (5) and (6). Aerial oxygen is most likely the oxidant (for the oxidation of V-IV -> V-V) in the synthesis of pentavalent complexes (5) and (6). [(VO)-O-IV(L)(B)] complexes are one electron paramagnetic and display axial EPR spectra, while the [(VO)-O-V(L)(hq)] complexes are diamagnetic. The X-ray structure of [(VO)-O-V(L-2)(hq)] (6) indicates that H2L2 ligand is bonded with the vanadium meridionally in a tridentate dinegative fashion through its phenolic-O, enolic-O and imine-N atoms. The general bond length order is: oxo < phenolato < enolato. The V-O (enolato) bond is longer than V-O (phenolato) bond by similar to 0.07 angstrom and is identical with V-O (carboxylate) bond. H-1 NMR spectrum of (6) in CDCl3 solution indicates that the binding nature in the solid state is also retained in solution. Complexes (1)(4) display two ligand-field transitions in the visible region near 820 and 480 nm in DMF solution and exhibit irreversible oxidation peak near +0.60 V versus SCE in DMSO solution, while complexes (5) and (6) exhibit only LMCT band near 535 nm and display quasi-reversible one electron reduction peak near -0.10 V versus SCE in CH2Cl2 solution. The VO3+-VO2+ E-1/2 values shift considerably to more negative values when neutral NN donor is replaced by anionic ON donor species and it also provides better VO3+ binding via phenolato oxygen. For a given bidentate ligand, E-1/2 increases in the order: (L-2)(2-) < (L-1)(2-). (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new iron thioantimonates, [Fe(en)(3)](2)Sb2S5 (.) 0.55H(2)O (1) and [Fe(en)(3)](2)Sb4S8 (2). were synthesised under solvothermal conditions from the reactions of Sb2S3, FeCl2 and S in the presence of ethylenediamine at 413 and 438 K, respectively. The products were characterised by single-crystal X-ray diffraction, elemental analysis and SQUID magnetometry. Compound 1 is unusual in containing isolated Sb2S54- anions formed from two corner-sharing SbS33- trigonal pyramids. These units are arranged in rippled layers, 4 A apart, parallel to the bc-plane. Octahedrally coordinated [Fe(en)(3)](2+) cations lie in depressions within these anionic layers. In compound (2), repeated corner linking of SbS33- trigonal pyramids generates SbS2- chains, which may be considered as a polymerised form of the Sb2S54- anions in 1. The SbS2- chains are separated by [Fe(en)(3)](2+) cations. In both compounds, there is an extensive network of hydrogen bonds between the nitrogen atoms of the ethylenediamine ligands and the sulfur atoms of the anions and, in the case of 1, the uncoordinated water molecule. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly[1,4,8,11-tetraazacyclotetradecane(2+) [hepta-mu-sulfidotrisulfidohexaantimony(III)]], {(C10H26N4)[Sb6S10]}(n), consists of novel [Sb6S10](2). layers containing Sb2S2, Sb4S4 and Sb7S7 hetero-rings, which are separated by macrocyclic amine molecules. The macrocyclic amine molecules are disordered over two crystallographically distinct positions and are diprotonated in order to balance the charge of the anionic layers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new approach of employing metal particles in micelles for the hydrogenation of organic molecules in the presence of fluorinated surfactant and water in supercritical carbon dioxide has very recently been introduced. This is allegedly to deliver many advantages for carrying out catalysis including the use of supercritical carbon dioxide (scCO(2)) as a greener solvent. Following this preliminary account, the present work aims to provide direct visual evidence on the formation of metal microemulsions and to investigate whether metal located in the soft micellar assemblies could affect reaction selectivity. Synthesis of Pd nanoparticles in perfluorohydrocarboxylate anionic micelles in scCO(2) is therefore carried out in a stainless steel batch reactor at 40 degreesC and in a 150 bar CO2/H-2 mixture. Homogeneous dispersion of the microemulsion containing Pd nanoparticles in scCO(2) is observed through a sapphire window reactor at W-0 ratios (molar water-to-surfactant ratios) ranging from 2 to 30. It is also evidenced that the use of micelle assemblies as new metal catalyst nanocarriers could indeed exert a great influence on product selectivity. The hydrogenation of a citral molecule that contains three reducible groups (aldehyde, double bonds at the 2,3-position and the 6,7-position) is studied. An unusually high selectivity toward citronellal (a high regioselectivity toward the reduction of the 2,3-unsaturation) is observed in supercritical carbon dioxide. On the other hand, when the catalysis is carried out in the conventional liquid or vapor phase over the same reaction time, total hydrogenation of the two double bonds is achieved. It is thought that the high kinetic reluctance for double bond hydrogenation of the citral molecule at the hydrophobic end (the 6,7-position) is due to the unique micelle environment that is in close proximity to the metal surface in supercritical carbon dioxide that guides a head-on attack of the molecule toward the core metal particle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Siramesine (SRM) is a sigma-2 receptor agonist which has been recently shown to inhibit growth of cancer cells. Fluorescence spectroscopy experiments revealed two distinct binding sites for this drug in phospholipid membranes. More specifically, acidic phospholipids retain siramesine on the bilayer surface due to a high-affinity interaction, reaching saturation at an apparent 1:1 drug-acidic phospholipid stoichiometry, where after the drug penetrates into the hydrocarbon core of the membrane. This behavior was confirmed using Langmuir films. Of the anionic phospholipids, the highest affinity, comparable to the affinities for the binding of small molecule ligands to proteins, was measured for phosphatidic acid (PA, mole fraction Of X-PA = 0.2 in phosphatidylcholine vesicles), yielding a molecular partition coefficient of 240 +/- 80 x 10(6). An MD simulation on the siramesine:PA interaction was in agreement with the above data. Taking into account the key role of PA as a signaling molecule promoting cell growth our results suggest a new paradigm for the development of anticancer drugs, viz. design of small molecules specifically scavenging phospholipids involved in the signaling cascades controlling cell behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five new thioantimonates have been synthesized in the presence of organic amines under solvothermal conditions and their structures determined by single-crystal X-ray diffraction. All of the compounds are layered and contain antimony-sulphide anions of stoichiometry [Sb4S7](2-), but the structure of the anion formed is dependent on the amine used in synthesis. (H3N(CH2)(4)NH3)[Sb4S7] (1) contains [Sb4S7](2-) double chains directed along [010]. Weak interchain Sb-S interactions between neighbouring chains cause the double chains to pack into layers in the ab plane. In the [001] direction, the layers of double chains alternate with doubly protonated diaminobutane molecules to which the chains are hydrogen bonded. Compounds of general formula (TH)(2)[Sb4S7] (T= CH3(CH2)(2)NH2 (2), (CH3)(2)CHNH2 (3), CH3(CH2)(3)NH2 (4) and CH3(CH2)(4)NH2 (5)) adopt a more complex structure in which [Sb3S8](7-) units are linked by Sb-3(3-) pyramids to form chains, which in turn are bridged by sulphur atoms to create sheets containing large heterorings. Pairs of such sheets form double layers of four atoms thickness that are stacked along [001]. Protonated amine molecules are located between anionic antimony-sulphide layers to which they are hydrogen bonded. Thermal analysis reveals that the decomposition temperature of materials containing [Sb4S7](2-) anions is dependent both on the structure of the anion, the lowest decomposition temperature being that of the low-dimensional phase (1) and on the identity of the amine, the decomposition temperature decreasing with an increasing number of carbon atoms and decreasing density. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treatment of [Ir(bpa)(cod)](+) complex [1](+) with a strong base (e.g., tBuO(-)) led to unexpected double deprotonation to form the anionic [Ir-(bpa-2H)(cod)](-) species [3](-), via the mono-deprotonated neutral amido complex [Ir(bpa-H)(cod)] as an isolable intermediate. A certain degree of aromaticity of the obtained metal-chelate ring may explain the favourable double deprotonation. The rhodium analogue [4](-) was prepared in situ. The new species [M(bpa-2H)(cod)](-) (M = Rh, Ir) are best described as two-electron reduced analogues of the cationic imine complexes [M-I(cod)(Py-CH2-N=CH-Py)](+). One-electron oxidation of [3](-) and [4](-) produced the ligand radical complexes [3]* and [4]*. Oxygenation of [3](-) with O-2 gave the neutral carboxamido complex [Ir(cod)(py-CH2-N-CO-py)] via the ligand radical complex [3]* as a detectable intermediate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of isoelectronic replacement of a neutral nitrogen donor atom by an anionic carbon atom in terpyridine ruthenium(II) complexes on the electronic and photophysical properties of the resulting N,C,N'- and C,N,N'-cyclometalated aryl ruthenium(II) complexes were investigated. To this end, a series of complexes was prepared either with ligands containing exclusively nitrogen donor atoms, that is, [Ru(R-1-tpy)(R-2-tpy)](2+) (R-1, R-2 = H, CO2Et), or bearing either one N,C,N'- or C,N,N'-cyclometalated ligand and one tpy ligand, that is, [Ru(R-1-(NCN)-C-Lambda-N-Lambda)(R-2-tpy)](+) and [Ru(R-1-(CNN)-N-Lambda-N-Lambda)(R-2-tpy)](+), respectively. Single-crystal X-ray structure determinations showed that cyclometalation does not significantly alter the overall geometry of the complexes but does change the bond lengths around the ruthenium(II) center, especially the nitrogen-to-ruthenium bond length trans to the carbanion. Substitution of either of the ligands with electron-withdrawing ester functionalities fine-tuned the electronic properties and resulted in the presence of an IR probe. Using trends obtained from redox potentials, emission energies, IR spectroelectrochemical responses, and the character of the lowest unoccupied molecular orbitals from DFT studies, it is shown that the first reduction process and luminescence are associated with the ester-substituted C,N,N'-cyclometalated ligand in [Ru(EtO2C-(CNN)-N-Lambda-N-Lambda)(tpy)](+). Cyclometalation in an N,C,N'-bonding motif changed the energetic order of the ruthenium d(zx), d(yz), and d(xy) orbitals. The red-shifted absorption in the N,C,N'-cyclometalated complexes is assigned to MLCT transitions to the tpy ligand. The red shift observed upon introduction of the ester moiety is associated with an increase in intensity of low-energy transitions, rather than a red shift of the main transition. Cyclometalation in the C,N,N'-binding motif also red-shifts the absorption, but the corresponding transition is associated with both ligand types. Luminescence of the cyclometalated complexes is relatively independent of the mode of cyclometalation, obeying the energy gap law within each individual series.