72 resultados para and human breast cancer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alkyl esters of p-hydroxybenzoic acid (parabens), which are used as preservatives in consumer products, possess oestrogenic activity and have been measured in human breast tissue. This has raised concerns for a potential involvement in the development of human breast cancer. In this paper, we have investigated the extent to which proliferation of MCF-7 human breast cancer cells can be increased by exposure to the five parabens either alone or in combination at concentrations as recently measured in 160 human breast tissue samples. Determination of no-observed-effect concentrations (NOEC), lowest-observed-effect concentrations (LOEC), EC50 and EC100 values for stimulation of proliferation of MCF-7 cells by five parabens revealed that 43/160 (27%) of the human breast tissue samples contained at least one paraben at a concentration ≥ LOEC and 64/160 (40%) > NOEC. Proliferation of MCF-7 cells could be increased by combining all five parabens at concentrations down to the 50th percentile (median) values measured in the tissues. For the 22 tissue samples taken at the site of ER + PR + primary cancers, 12 contained a sufficient concentration of one or more paraben to stimulate proliferation of MCF-7 cells. This demonstrates that parabens, either alone or in combination, are present in human breast tissue at concentrations sufficient to stimulate the proliferation of MCF-7 cells in vitro, and that functional consequences of the presence of paraben in human breast tissue should be assessed on the basis of all five parabens and not single parabens individually.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminium (Al) has been measured in human breast tissue, and may be a contributory factor in breast cancer development. At the 10th Keele meeting, we reported that long-term exposure to Al could increase migratory properties of oestrogen-responsive MCF-7 human breast cancer cells suggesting a role for Al in the metastatic process. We now report that long-term exposure (20–25 weeks) to Al chloride or Al chlorohydrate at 10−4 M or 10−5Mconcentrations can also increase themigration of oestrogen unresponsiveMDA-MB-231 human breast cancer cells as measured using time-lapse microscopy and xCELLigence technology. In parallel, Al exposure was found to give rise to increased secretion of active matrixmetalloproteinaseMMP9 as measured by zymography, and increased intracellular levels of activated MMP14 as measured by western immunoblotting. These results demonstrate that Al can increase migration of human breast cancer cells irrespective of their oestrogen responsiveness, and implicate alterations to MMPs as a potential mechanism worthy of further study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A framework for understanding the complexity of cancer development was established by Hanahan and Weinberg in their definition of the hallmarks of cancer. In this review, we consider the evidence that parabens can enable development in human breast epithelial cells of 4/6 of the basic hallmarks, 1/2 of the emerging hallmarks and 1/2 of the enabling characteristics. Hallmark 1: parabens have been measured as present in 99% of human breast tissue samples, possess oestrogenic activity and can stimulate sustained proliferation of human breast cancer cells at concentrations measurable in the breast. Hallmark 2: parabens can inhibit the suppression of breast cancer cell growth by hydroxytamoxifen, and through binding to the oestrogen-related receptor gamma (ERR) may prevent its deactivation by growth inhibitors. Hallmark 3: in the 10nM to 1M range, parabens give a dose-dependent evasion of apoptosis in high-risk donor breast epithelial cells. Hallmark 4: long-term exposure (>20weeks) to parabens leads to increased migratory and invasive activity in human breast cancer cells, properties which are linked to the metastatic process. Emerging hallmark: methylparaben has been shown in human breast epithelial cells to increase mTOR, a key regulator of energy metabolism. Enabling characteristic: parabens can cause DNA damage at high concentrations in the short term but more work is needed to investigate long-term low-doses of mixtures. The ability of parabens to enable multiple cancer hallmarks in human breast epithelial cells provides grounds for regulatory review of the implications of the presence of parabens in human breast tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a consequence of its widespread use as an antimicrobial agent in consumer goods, triclosan has become distributed ubiquitously across the ecosystem, and recent reports that it can cause endocrine disruption in aquatic species has increased concern. It is reported here that triclosan possesses intrinsic oestrogenic and androgenic activity in a range of assays in vitro which could provide some explanation for the endocrine disrupting properties described in aquatic populations. In terms of oestrogenic activity, triclosan displaced [H-3]oestradiol from oestrogen receptors (ER) of MCF7 human breast cancer cells and from recombinant human ER alpha/ER beta. Triclosan at 10(-5) M completely inhibited the induction of the oestrogen-responsive ERE-CAT reporter gene in MCF7 cells by 10(-10) M 17 beta-oestradiol and the stimulation of growth of MCF7 human breast cancer cells by 10(-10) M 17 beta-oestradiol. On its own, 1 mu M triclosan increased the growth of MCF7 cells over 21 days. Triclosan also had androgenic activity. It displaced [H-3]testosterone from binding to the ligand binding domain of the rat androgen receptor (AR). Triclosan was able to inhibit the induction of the androgen-responsive LTR-CAT reporter gene in S115 mouse mammary tumour cells by 10(-9) M testosterone and in T47D human breast cancer cells by 10(-8) M testosterone at concentrations of 10(-7) M and 10(-6) M, respectively. Triclosan at 2 x 10(-5) M antagonized the stimulation of the growth of S115+A mouse mammary tumour cells by 10(-9) M testosterone. The finding that triclosan has oestrogenic and androgenic activity warrants further investigation in relation to both endocrine disruption of aquatic wildlife and any possible impact on human health. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminium salts are used as the active antiperspirant agent in underarm cosmetics, but the effects of widespread, long term and increasing use remain unknown, especially in relation to the breast, which is a local area of application. Clinical studies showing a disproportionately high incidence of breast cancer in the upper outer quadrant of the breast together with reports of genomic instability in outer quadrants of the breast provide supporting evidence for a role for locally applied cosmetic chemicals in the development of breast cancer. Aluminium is known to have a genotoxic profile, capable of causing both DNA alterations and epigenetic effects, and this would be consistent with a potential role in breast cancer if such effects occurred in breast cells. Oestrogen is a well established influence in breast cancer and its action, dependent on intracellular receptors which function as ligand-activated zinc finger transcription factors, suggests one possible point of interference from aluminium. Results reported here demonstrate that aluminium in the form of aluminium chloride or aluminium chlorhydrate can interfere with the function of oestrogen receptors of MCF7 human breast cancer cells both in terms of ligand binding and in terms of oestrogen-regulated reporter gene expression. This adds aluminium to the increasing list of metals capable of interfering with oestrogen action and termed metal I oestrogens. Further studies are now needed to identify the molecular basis of this action, the longer term effects of aluminium exposure and whether aluminium can cause aberrations to other signalling pathways in breast cells. Given the wide exposure of the human population to antiperspirants, it will be important to establish dermal absorption in the local area of the breast and whether long term low level absorption could play a role in the increasing incidence of breast cancer. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bis-[(p-methoxybenzyl)cyclopentadienyl] titanium dichloride, better known as Titanocene Y, is a newly synthesized transition metal-based anticancer drug. We studied the antitumor activity of Titanocene Y with concentrations of 2.1, 21 and 210 mu mol/l against a freshly explanted human breast cancer, using an in-vitro soft agar cloning system. The sensitivity against Titanocene Y was highly remarkable in the breast cancer tumor in the full concentration range. Titanocene Y showed cell death induction at 2.1 mu mol/l, well comparable to cisplatin, given at a concentration of 1.0 mu mol/l. A further preclinical development of Titanocene Y was warranted and therefore an MCF-7 human breast cancer xenograft nonobese diabetic/severe combined immunodeficient mouse model was used. Titanocene Y was given for 21 days at 30 mg/kg/ day (75% of the maximum tolerable dose of Titanocene Y), which resulted in the reduction of the tumor volume to around one-third, whereas no mouse was lost because of the surprisingly low toxicity of Titanocene Y.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Soy isoflavones may inhibit tumor cell invasion and metastasis via their effects on matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). The current study investigates the effects of daidzein, R- and S-equol on the invasion of MDA-MB-231 human breast cancer cells and the effects of these compounds on MMP/TIMP expression at the mRNA level. METHODS: The anti-invasive effects of daidzein, R- and S-equol (0, 2.5, 10, 50 μM) on MDA-MB-231 cells were determined using the Matrigel invasion assay following 48-h exposure. Effects on MMP-2, MMP-9, TIMP-1 and TIMP-2 expression were assessed using real-time PCR. Chiral HPLC analysis was used to determine intracellular concentrations of R- and S-equol. RESULTS: The invasive capacity of MDA-MB-231 cells was significantly reduced (by approximately 50-60 %) following treatment with 50 μM daidzein, R- or S-equol. Anti-invasive effects were also observed with R-equol at 2.5 and 10 μM though overall equipotent effects were induced by all compounds. Inhibition of invasion induced by all three compounds at 50 μM was associated with the down-regulation of MMP-2, while none of the compounds tested significantly affected the expression levels of MMP-9, TIMP-1 or TIMP-2 at this concentration. Following exposure to media containing 50 μM R- or S-equol for 48-h intracellular concentrations of R- and S-equol were 4.38 ± 1.17 and 3.22 ± 0.47 nM, respectively. CONCLUSION: Daidzein, R- and S-equol inhibit the invasion of MDA-MB-231 human breast cancer cells in part via the down-regulation of MMP-2 expression, with equipotent effects observed for the parent isoflavone daidzein and the equol enantiomers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human population is exposed to aluminium (Al) from diet, antacids and vaccine adjuvants, but frequent application of Al-based salts to the underarm as antiperspirant adds a high additional exposure directly to the local area of the human breast. Coincidentally the upper outer quadrant of the breast is where there is also a disproportionately high incidence of breast cysts and breast cancer. Al has been measured in human breast tissues/fluids at higher levels than in blood, and experimental evidence suggests that at physiologically relevant concentrations, Al can adversely impact on human breast epithelial cell biology. Gross cystic breast disease is the most common benign disorder of the breast and evidence is presented that Al may be a causative factor in formation of breast cysts. Evidence is also reviewed that Al can enable the development of multiple hallmarks associated with cancer in breast cells, in particular that it can cause genomic instability and inappropriate proliferation in human breast epithelial cells, and can increase migration and invasion of human breast cancer cells. In addition, Al is a metalloestrogen and oestrogen is a risk factor for breast cancer known to influence multiple hallmarks. The microenvironment is established as another determinant of breast cancer development and Al has been shown to cause adverse alterations to the breast microenvironment. If current useage patterns of Al-based antiperspirant salts contribute to causation of breast cysts and breast cancer, then reduction in exposure would offer a strategy for prevention, and regulatory review is now justified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This toxicology update reviews research over the past four years since publication in 2004 of the first measurement of intact esters of p-hydroxybenzoic acid (parabens) in human breast cancer tissues, and the suggestion that their presence in the human body might originate from topical application of bodycare cosmetics. The presence of intact paraben esters in human body tissues has now been confirmed by independent measurements in human urine, and the ability of parabens to penetrate human skin intact without breakdown by esterases and to be absorbed systemically has been demonstrated through studies not only in vitro but also in vivo using healthy human subjects. Using a wide variety of assay systems in vitro and in vivo, the oestrogen agonist properties of parabens together with their common metabolite (p-hydroxybenzoic acid) have been extensively documented, and, in addition, the parabens have now also been shown to possess androgen antagonist activity, to act as inhibitors of sulfotransferase enzymes and to possess genotoxic activity. With the continued use of parabens in the majority of bodycare cosmetics, there is a need to carry out detailed evaluation of the potential for parabens, together with other oestrogenic and genotoxic co-formulants of bodycare cosmetics, to increase female breast cancer incidence, to interfere with male reproductive functions and to influence development of malignant melanoma which has also recently been shown to be influenced by oestrogenic stimulation. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the mean age of the global population increases, breast cancer in older individuals will be increasingly encountered in clinical practice. Management decisions should not be based on age alone. Establishing recommendations for management of older individuals with breast cancer is challenging because of very limited level 1 evidence in this heterogeneous population. In 2007, the International Society of Geriatric Oncology (SIOG) created a task force to provide evidence-based recommendations for the management of breast cancer in elderly individuals. In 2010, a multidisciplinary SIOG and European Society of Breast Cancer Specialists (EUSOMA) task force gathered to expand and update the 2007 recommendations. The recommendations were expanded to include geriatric assessment, competing causes of mortality, ductal carcinoma in situ, drug safety and compliance, patient preferences, barriers to treatment, and male breast cancer. Recommendations were updated for screening, primary endocrine therapy, surgery, radiotherapy, neoadjuvant and adjuvant systemic therapy, and metastatic breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the decade that has elapsed since the suggestion that exposure of the foetal/developing male to environmental oestrogens could be the cause of subsequent reproductive and developmental effects in men, there has been little definitive research to provide conclusions to the hypothesis. Issues of exposure and low potency of environmental oestrogens may have reduced concerns. However, the hypothesis that chemicals applied in body care cosmetics (including moisturizers, creams, sprays or lotions applied to axilla or chest or breast areas) may be affecting breast cancer incidence in women presents a different case scenario, not least in the consideration of the exposure issues. The specific cosmetic type is not relevant but the chemical ingredients in the formulations and the application to the skin is important. The most common group of body care cosmetic formulation excipients, namely p-hydroxybenzoic acid esters or parabens, have been shown recently to be oestrogenic in vitro and in vivo and now have been detected in human breast tumour tissue, indicating absorption (route and causal associations have yet to be confirmed). The hypothesis for a link between oestrogenic ingredients in underarm and body care cosmetics and breast cancer is forwarded and reviewed here in terms of. data on exposure to body care cosmetics and parabens, including dermal absorption; paraben oestrogenicity; the role of oestrogen in breast cancer; detection of parabens in breast tumours; recent epidemiology studies of underarm cosmetics use and breast cancer; the toxicology database; the current regulatory status of parabens and regulatory toxicology data uncertainties. Notwithstanding the major public health issue of the causes of the rising incidence of breast cancer in women, this call for further research may provide the first evidence that environmental factors may be adversely affecting human health by endocrine disruption, because exposure to oestrogenic chemicals through application of body care products (unlike diffuse environmental chemical exposures) should be amenable to evaluation, quantification and control. The exposure issues are clear and the exposed population is large, and these factors should provide the necessary impetus to investigate this potential issue of public health. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The established role of oestrogen in the development and progression of breast cancer raises questions concerning a potential contribution from the many chemicals in the environment which can enter the human breast and which have oestrogenic activity. A range of organochlorine pesticides and polychlorinated bipheryls possess oestrogen-mimicking properties and have been measured in human breast adipose tissue and in human milk. These enter the breast from varied environmental contamination of food, water and air, and due to their lipophilic properties can accumulate in breast fat. However, it is emerging that the breast is also exposed to a range of oestrogenic chemicals applied as cosmetics to the underarm and breast area. These cosmetics are left on the skin in the appropriate area, allowing a more direct dermal absorption route for breast exposure to oestrogenic chemicals and allowing absorbed chemicals to escape systemic metabolism. This review considers evidence in support of a functional role for the combined interactions of cosmetic chemicals with environmental oestrogens, pharmacological oestrogens, phyto-oestrogens and physiological oestrogens in the rising incidence of breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many environmental compounds with oestrogenic activity are measurable in the human breast and oestrogen is a known factor in breast cancer development. Exposure to environmental oestrogens occurs through diet, household products and cosmetics, but concentrations of single compounds in breast tissue are generally lower than needed for assayable oestrogenic responses. Results presented here and elsewhere demonstrate that in combination, chemicals can give oestrogenic responses at lower concentrations, which suggests that in the breast, low doses of many compounds could sum to give a significant oestrogenic stimulus. Updated incidence figures show a continued disproportionate incidence of breast cancer in Britain in the upper outer quadrant of the breast which is also the region to which multiple cosmetic chemicals are applied. CONCLUSION: If exposure to complex mixtures of oestrogenic chemicals in consumer products is a factor in breast cancer development, then a strategy for breast cancer prevention could become possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human population is now exposed on a daily basis to a multitude of environmental pollutant chemicals that would not have been present a century ago, and many of these chemicals have been detected in the human breast. The fatty nature of human breast tissue makes it a particular target for lipophilic as well as hydrophilic pollutant chemicals, which may enter the human body through oral, respiratory, or dermal routes. These chemicals possess a range of endocrine-disrupting properties and genotoxic activity, but from a breast cancer perspective the greatest concern has centered around their ability to mimic or interfere with the action of estrogen. The breast is an endocrine target organ and exposure to estrogen is a known risk factor for breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminium is not a physiological component of the breast but has been measured recently in human breast tissues and breast cyst fluids at levels above those found in blood serum or milk. Since the presence of aluminium can lead to iron dyshomeostasis, levels of aluminium and iron-binding proteins (ferritin, transferrin) were measured in nipple aspirate fluid (NAF), a fluid present in the breast duct tree and mirroring the breast microenvironment. NAFs were collected noninvasively from healthy women (NoCancer; n = 16) and breast cancer-affected women (Cancer; n = 19), and compared with levels in serum (n = 15) and milk (n = 45) from healthy subjects. The mean level of aluminium, measured by ICP-mass spectrometry, was significantly higher in Cancer NAF (268.4 ± 28.1 μg l−1; n = 19) than in NoCancer NAF (131.3 ± 9.6 μg l−1; n = 16; P < 0.0001). The mean level of ferritin, measured through immunoassay, was also found to be higher in Cancer NAF (280.0 ± 32.3 μg l−1) than in NoCancer NAF (55.5 ± 7.2 μg l−1), and furthermore, a positive correlation was found between levels of aluminium and ferritin in the Cancer NAF (correlation coefficient R = 0.94, P < 0.001). These results may suggest a role for raised levels of aluminium and modulation of proteins that regulate iron homeostasis as biomarkers for identification of women at higher risk of developing breast cancer. The reasons for the high levels of aluminium in NAF remain unknown but possibilities include either exposure to aluminium-based antiperspirant salts in the adjacent underarm area and/or preferential accumulation of aluminium by breast tissues.