78 resultados para alternative schooling
Resumo:
Previous attempts to apply statistical models, which correlate nutrient intake with methane production, have been of limited. value where predictions are obtained for nutrient intakes and diet types outside those. used in model construction. Dynamic mechanistic models have proved more suitable for extrapolation, but they remain computationally expensive and are not applied easily in practical situations. The first objective of this research focused on employing conventional techniques to generate statistical models of methane production appropriate to United Kingdom dairy systems. The second objective was to evaluate these models and a model published previously using both United Kingdom and North American data sets. Thirdly, nonlinear models were considered as alternatives to the conventional linear regressions. The United Kingdom calorimetry data used to construct the linear models also were used to develop the three. nonlinear alternatives that were ball of modified Mitscherlich (monomolecular) form. Of the linear models tested,, an equation from the literature proved most reliable across the full range of evaluation data (root mean square prediction error = 21.3%). However, the Mitscherlich models demonstrated the greatest degree of adaptability across diet types and intake level. The most successful model for simulating the independent data was a modified Mitscherlich equation with the steepness parameter set to represent dietary starch-to-ADF ratio (root mean square prediction error = 20.6%). However, when such data were unavailable, simpler Mitscherlich forms relating dry matter or metabolizable energy intake to methane production remained better alternatives relative to their linear counterparts.
Resumo:
Current gas-based in vitro evaluation systems are extremely powerful research techniques. However they have the potential to generate a great deal more than simple fermentation dynamics. Details from four experiments are presented in which adaptation, and novel application, of an in vitro system allowed widely differing objectives to be examined. In the first two studies, complement methodologies were utilised. In such assays, an activity or outcome is inferred through the occurrence of a secondary event rather than by direct observation. Using an N-deficient incubation medium, the increase in starch fermentation, when supplemented with individual amino acids (i.e., known level of N) relative to that of urea (i.e., known quantity and N availability), provided an estimate of their microbial utilisation. Due to the low level of response observed with some arnino acids (notably methionine and lysine), it was concluded, that they may not need to be offered in a rumen-inert form to escape rumen microbial degradation. In another experiment, the extent to which degradation of plant cell wall components was inhibited by lipid supplementation was evaluated using fermentation gas release profiles of washed hay. The different responses due to lipid source and level of inclusion suggested that the degree of rumen protection required to ameliorate this depression was supplement dependent. That in vitro inocula differ in their microbial composition is of little interest per se, as long as the outcome is the same (i.e., that similar substrates are degraded at comparable rates and end-product release is equivalent). However where a microbial population is deficient in a particular activity, increasing the level of inoculation will have no benefit. Estimates of hydrolytic activity were obtained by examining fermentation kinetics of specific substrates. A number of studies identified a fundamental difference between rumen fluid and faecal inocula, with the latter having a lower fibrolytic activity, which could not be completely attributed to microbial numbers. The majority of forage maize is offered as an ensiled feed, however most of the information on which decisions such as choice of variety, crop management and harvesting date are made is based on fresh crop measurements. As such, an attempt was made to estimate ensiled maize quality from an in vitro analysis of the fresh crop. Fermentation profiles and chemical analysis confirmed changes in crop composition over the growing season, and loss of labile carbohydrates during ensiling. In addition, examination of degradation residues allowed metabolizable energy (ME) contents to be estimated. Due to difficulties associated with starch analysis, the observation that this parameter could be predicted by difference (together with an assumed degradability), allowed an estimate of ensiled maize ME to be developed from fresh material. In addition, the contribution of the main carbohydrates towards ME showed the importance of delaying harvest until maximum starch content has been achieved. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
An appropriate model of recent human evolution is not only important to understand our own history, but it is necessary to disentangle the effects of demography and selection on genome diversity. Although most genetic data support the view that our species originated recently in Africa, it is still unclear if it completely replaced former members of the Homo genus, or if some interbreeding occurred during its range expansion. Several scenarios of modern human evolution have been proposed on the basis of molecular and paleontological data, but their likelihood has never been statistically assessed. Using DNA data from 50 nuclear loci sequenced in African, Asian and Native American samples, we show here by extensive simulations that a simple African replacement model with exponential growth has a higher probability (78%) as compared with alternative multiregional evolution or assimilation scenarios. A Bayesian analysis of the data under this best supported model points to an origin of our species approximate to 141 thousand years ago (Kya), an exit out-of-Africa approximate to 51 Kya, and a recent colonization of the Americas approximate to 10.5 Kya. We also find that the African replacement model explains not only the shallow ancestry of mtDNA or Y-chromosomes but also the occurrence of deep lineages at some autosomal loci, which has been formerly interpreted as a sign of interbreeding with Homo erectus.
Resumo:
A perennial issue for land use policy is the evaluation of landscape biodiversity and the associated cost effectiveness of any biodiversity conservation policy actions. Based on the CUA methodology as applied to species conservation, this paper develops a methodology for evaluating the impact on habitats of alternative landscape management scenarios. The method incorporates three dimensions of habitats, quantity change, quality change and relative scarcity, and is illustrated in relation to the alternative landscape management scenarios for the Scottish Highlands (Cairngorms) study area of the BioScene project. The results demonstrate the value of the method for evaluating biodiversity conservation policies through their impact on habitats.
Resumo:
A range of linear polyurethanes featuring aliphatic, aromatic and ether residues have been prepared by co-polymerisation of novel 'masked' isocyanate A(2)-type monomers and diols. The reactive isocyanate monomers were generated in situ via the triphenylphosphine mediated decomposition of the heterocyclic disulfide, 1,2,4-dithiazolidine-3,5-dione. Two different synthetic approaches were examined and assessed for the construction of the novel A(2)-type monomers, which involved either coupling two 1,2,4-dithiazolidine-3,5-diones together through a spacer group or construction of 1,2,4-dithiazolidine-3,5-diones directly from diamines. The resulting polyurethanes were purified via solvent extraction and analysed using GPC, NMR and IR spectroscopic analyses. Molecular weight data were obtained and compared from both GPC and H-1 NMR (via end-group analysis) spectroscopic analysis. The thermal properties of the polyurethanes were determined using DSC and their solubility in common aprotic organic solvents was also assessed and related to their structural composition. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The study focuses on a group of young people for whom conventional school placements had broken down and were attending vocational courses at an FE college while still of compulsory school age. The students had been excluded by, or had failed to attend, their schools or had achieved at very low levels in the academic curriculum. Over half successfully completed the vocational course at college. Many factors conventionally regarded as predictors for poor educational outcomes were not associated with completion and non-completion. For example, students who had been excluded, who had statements of special educational needs and had been involved with the criminal justice system were as likely to complete their courses as other students. However, students who had very poor attendance records at school also tended to drop out of college. The results suggest that the increased flexibility, guidance and elements of work-related learning promised in current 14 - 19 developments may help meet the needs of this group of students.
Resumo:
Thiocyanate content and lactoperoxidase activity of individual cow's milk of different breeds were determined, and the effects of different lactoperoxidase system (LP-s) activation strategies were compared. Lactoperoxidase activity varied significantly between Friesian and both Ayrshire and Tanzania Short Horn Zebu (TSHZ), but differences between Ayrshire and TSHZ were not significant. There was no significant variation in SCN- content between breeds. The LP-s was activated using three strategies based on SCN-: namely; equal concentrations of SCN- and H2O2 (7:7, 10:10, 15 :15 mg/l), excess SCN- concentrations (15:10, 20:10, 25:10 mg SCN-: H2O2/I), and excess H2O2 concentrations (10:15, 10:20, 10:25 mg SCN-: H2O2/I), plus a fourth strategy based on I- (15 : 15 mg I- : H2O2/I). The keeping quality (KQ) was assessed using pH, titratable acidity, clot on boiling and alcohol stability tests. All activation strategies enhanced the shelf life of milk (typically increasing KQ from around 10 to around 20 h), but it was clear that the effectiveness of the LP-s depends on the type and concentrations of the activators of the system. The LP-s activated using I- as an electron donor was more effective than the LP-s activated using SCN- as an electron donor, increasing the KQ by a further 6-8 h compared with SCN-.
Resumo:
Bone metabolism involves a complex balance between the deposition of matrix and mineralization and resorption. There is now good evidence that dietary components and herbal products can influence these processes, particularly by inhibiting bone resorption, thus having beneficial effects on the skeleton. For example, it has been reported that a number of common vegetables, including onion, garlic and parsley, can inhibit bone resorption in ovariectomized rats. Essential oils derived from sage, rosemary, thyme and other herbs inhibit osteoclast activity in vitro and in vitro and leading to an increase in bone mineral density. Soya, a rich source of isoflavones, has shown promising results and epidemiological evidence to support a use in maintaining bone health, and various traditional herbal formulae in Chinese and Ayurvedic medicine also have demonstrable effects in pharmacological models of osteoporosis. Recently, cannabinoids have been described as having positive effects on osteoblast differentiation, and the presence of cannabinoid receptors in bone tissue indicates a more complex role in bone metabolism than previously thought. The first part of this review briefly discusses normal bone metabolism and disorders caused by its disruption, with particular reference to osteoporosis and current pharmacological treatments. The effects of natural products on bone and connective tissue are then discussed, to include items of diet, herbal extracts and food supplements, with evidence for their efficacy outlined. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
Mainstream schooling is a key policy in the promotion of social inclusion of young people with learning disabilities. Yet there is limited evidence about the school experience of young people about to leave mainstream as compared with segregated education, and how it impacts on their relative view of self and future aspirations. Sixty young people with mild to moderate intellectual disabilities in their final year of secondary school participated in this study. Twenty-eight individuals came from mainstream schools and 32 attended segregated school. They completed a series of self-report measures on perceptions of stigma, social comparison to a more disabled and non-disabled peer and the likelihood involved in attaining their future goals. The majority of participants from both groups reported experiencing stigmatized treatment in the local area where they lived. The mainstream group reported significant additional stigma at school. In terms of social comparisons, both groups compared themselves positively with a more disabled peer and with a non-disabled peer. While the mainstream pupils had more ambitious work-related aspirations, both groups felt it equally likely that they would attain their future goals. Although the participants from segregated schools came from significantly more deprived areas and had lower scores on tests of cognitive functioning, neither of these factors appeared to have an impact on their experience of stigma, social comparisons or future aspirations. Irrespective of schooling environment, the young people appeared to be able to cope with the threats to their identities and retained a sense of optimism about their future. Nevertheless, negative treatment reported by the children was a serious source of concern and there is a need for schools to promote the emotional well-being of pupils with intellectual disabilities.
Resumo:
Since 1988, there has been, on average, a 91% increase in dissolved organic carbon (DOC) concentrations of UK lakes and streams in the Acid Waters Monitoring Network (AWMN). Similar DOC increases have been observed in surface waters across much of Europe and North America. Much of the debate about the causes of rising DOC has, as in other studies relating to the carbon cycle, focused on factors related to climate change. Data from our peat-core experiments support an influence of climate on DOC, notably an increase in production with temperature under aerobic, and to a lesser extent anaerobic, conditions. However, we argue that climatic factors may not be the dominant drivers of DOC change. DOC solubility is suppressed by high soil water acidity and ionic strength, both of which have decreased as a result of declining sulphur deposition since the 1980s, augmented during the 1990s in the United Kingdom by a cyclical decline in sea-salt deposition. Our observational and experimental data demonstrate a clear, inverse and quantitatively important link between DOC and sulphate concentrations in soil solution. Statistical analysis of 11 AWMN lakes suggests that rising temperature, declining sulphur deposition and changing sea-salt loading can account for the majority of the observed DOC trend. This combination of evidence points to the changing chemical composition of atmospheric deposition, particularly the substantial reduction in anthropogenic sulphur emissions during the last 20 years, as a key cause of rising DOC. The implications of rising DOC export for the carbon cycle will be very different if linked primarily to decreasing acid deposition, rather than to changes in climate, suggesting that these systems may be recovering rather than destabilising.