19 resultados para advanced oxidation process
Resumo:
Different theoretical accounts of second language (L2) acquisition differ with respect to whether or not advanced learners are predicted to show native like processing for features not instantiated in the native language (L1). We examined how native speakers of English, a language with number but not gender agreement, process number and gender agreement in Spanish. We compare agreement within a determiner phrase (órgano muy complejo “[DP organ-MASC-SG very complex-MASC-SG]”) and across a verb phrase (cuadro es auténtico “painting-MASC-SG [VP is authentic-MASC-SG]”) in order to investigate whether native like processing is limited to local domains (e.g. within the phrase), in line with Clahsen and Felser (2006). We also examine whether morphological differences in how the L1 and L2 realize a shared feature impact processing by comparing number agreement between nouns and adjectives, where only Spanish instantiates agreement, and between demonstratives and nouns, where English also instantiates agreement. Similar to Spanish natives, advanced learners showed a P600 for both number and gender violations overall, in line with the Full Transfer/Full Access Hypothesis (Schwartz and Sprouse, 1996), which predicts that learners can show native-like processing for novel features. Results also show that learners can establish syntactic dependencies outside of local domains, as suggested by the presence of a P600 for both within and across phrase violations. Moreover, similar to native speakers, learners were impacted by the structural distance (number of intervening phrases) between the agreeing elements, as suggested by the more positive waveforms for within than across-phrase agreement overall. These results are consistent with the proposal that learners are sensitive to hierarchical structure.
Resumo:
To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl–DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.
Resumo:
The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3–UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3–UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN > 3 nm), while the profiles of larger particles (e.g. CN > 100 nm) are controlled by the same processes as the component mass profiles, plus the size distribution of primary emissions. We also show that the processes that affect the AOD-normalised radiative forcing in the model are predominantly those that affect the vertical mass distribution, in particular convective transport, in-cloud scavenging, aqueous oxidation, ageing and the vertical extent of biomass-burning emissions.