70 resultados para ZrO_2 films
Resumo:
Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxiclant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxiclant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 mu mol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 mu mol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 mu g/g), quercetin (ranging from 196 to 880,mu g/g), and luteolin (ranging from 19 to 152 mu g/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.
Resumo:
Greenhouse cladding materials are a major component in the design of energy efficient greenhouses. The optical properties of cladding materials determine a major part of the overall performance of a greenhouse both in terms of the energy balance of the greenhouse and on crop behavior. Various film plastic greenhouse-cladding materials were measured under laboratory conditions using a spectroradiometer equipped with an integrating sphere. Films were measured over a range of angles of incidence and the effect of increasing distance between double films was also measured. PAR transmission remained nearly constant for angles of incidence increased up to 30 degrees but fell rapidly thereafter as the angles of incidence increased up to 90 degrees. Increasing distance between double films did not significantly affect PAR transmission in all films examined. These results are discussed in relation to the design criteria for an energy efficient greenhouse.
Resumo:
The ordering of block copolymers in thin films is reviewed, starting, from the fundamental principles and extending to recent promising developments as templates for nanolithography which may find important applications in the semiconductor industry. Ordering in supported thin films of symmetric and asymmetric AB diblock and ABA triblock copolymers is discussed, along with that of more complex materials such as ABC triblocks and liquid crystalline block copolymers Techniques to prepare thin films, and to characterise ordering within them, are summarized. Several methods to align Hock copolymer nanostructures, important in several applications are outlined A number of potential applications in nanolithography, production of porous materials, templating. and patterning of organic and inorganic materials are then presented. The influence of crystallization on the morphology of a block copolymer film is briefly discussed, as are structures in grafted block copolymer films. (C) 2009 Elsevier Ltd All rights reserved.
Resumo:
Nanofilm deposits of TiO2 nanoparticle phytates are formed on gold electrode surfaces by 'directed assembly' methods. Alternate exposure of a 3-mercapto-propionic acid modified gold surface to (i) a TiO2 sol and (ii) an aqueous phytic acid solution (pH 3) results in layer-by-layer formation of a mesoporous film. Ru(NH3)(6)(3+) is shown to strongly adsorb/accumulate into the mesoporous structure whilst remaining electrochemically active. Scanning the electrode potential into a sufficiently negative potential range allows the Ru(NH3)(6)(3+) complex to be reduced to Ru(NH3)(6)(2+) which undergoes immediate desorption. When applied to a gold coated quartz crystal microbalance (QCM) sensor, electrochemically driven adsorption and desorption processes in the mesoporous structure become directly detectable as a frequency response, which corresponds directly to a mass or density change in the membrane. The frequency response (at least for thin films) is proportional to the thickness of the mass-responsive film, which suggests good mechanical coupling between electrode and film. Based on this observation, a method for the amplified QCM detection of small mass/density changes is proposed by conducting measurements in rigid mesoporous structures. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Ellipsometry and atomic force microscopy (AFM) were used to study the film thickness and the surface roughness of both 'soft' and solid thin films. 'Soft' polymer thin films of polystyrene and poly(styrene-ethylene/butylene-styrene) block copolymer were prepared by spin-coating onto planar silicon wafers. Ellipsometric parameters were fitted by the Cauchy approach using a two-layer model with planar boundaries between the layers. The smooth surfaces of the prepared polymer films were confirmed by AFM. There is good agreement between AFM and ellipsometry in the 80-130 nm thickness range. Semiconductor surfaces (Si) obtained by anisotropic chemical etching were investigated as an example of a randomly rough surface. To define roughness parameters by ellipsometry, the top rough layers were treated as thin films according to the Bruggeman effective medium approximation (BEMA). Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased etching time, although AFM results depend on the used window size. The combined use of both methods appears to offer the most comprehensive route to quantitative surface roughness characterisation of solid films. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
The aim of this work was to study the effects of drying methods and conditions (i.e., ambient drying, hot air drying at 40 degrees C, vacuum drying and low-pressure superheated steam drying within the temperature range of 70-90 degrees C at an absolute pressure of 10 kPa) as well as the concentration of galangal extract on the antimicrobial activity of edible chitosan films against Staphylococcus aureus. Galangal extract was added to the film forming solution as a natural antimicrobial agent in the concentration range of 0.3-0.9 g/100 g. Fourier transform infrared (FTIR) spectra and swelling of the films were also evaluated to investigate interaction between chitosan and the galangal extract. The antimicrobial activity of the films was evaluated by the disc diffusion and viable cell count method, while the morphology of bacteria treated with the antimicrobial films was observed via transmission electron microscopy (TEM). The antimicrobial activity, swelling and functional group interaction of the antimicrobial films were found to be affected by the drying methods and conditions as well as the concentration of the galangal extract. The electron microscopic observations revealed that cell wall and cell membrane of S. aureus treated by the antimicrobial films were significantly damaged. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Mucoadhesive polymeric films have been prepared based on blends of chitosan and hydroxyethylcellulose. The blends have been characterized by IR spectroscopy, DSC, WAXD, TGA, SEM, and mechanical testing. It is demonstrated that the mechanical properties of chitosan are improved significantly upon blending with hydroxyethylcellulose. An increase in hydroxyethylcellulose content in the blends makes the materials more elastic. The thermal treatment of the blends at 100 degrees C leads to partial cross-linking of the polymers and formation of water-insoluble but swellable materials. The adhesion of the films towards porcine buccal mucosa decreases with increasing hydroxyethylcellulose content in the blends.
Resumo:
Mixing of aqueous solutions of poly(acrylic acid) and (hydroxypropyl) cellulose results in formation of hydrogen-bonded interpolymer complexes, which precipitate and do not allow preparation of homogeneous polymeric films by casting. In the present work the effect of pH on the complexation between poly(acrylic acid) and (hydroxypropyl)cellulose in solutions and miscibility of these polymers in solid state has been studied. The pH-induced complexation-miscibility-immiscibility transitions in the polymer mixtures have been observed. The optimal conditions for preparation of homogeneous polymeric films based on blends of these polymers have been found, and the possibility of radiation cross-linking of these materials has been demonstrated. Although the gamma-radiation treatment of solid polymeric blends was found to be inefficient, successful cross-linking was achieved by addition of N, N'- methylenebis(acrylamide). The mucoadhesive potential of both soluble and cross-linked films toward porcine buccal mucosa is evaluated. Soluble films adhered to mucosal tissues undergo dissolution within 30-110 min depending on the polymer ratio in the blend. Cross-linked films are retained on the mucosal surface for 10-40 min and then detach.
Resumo:
Metallized plastics have recently received significant interest for their useful applications in electronic devices such as for integrated circuits, packaging, printed circuits and sensor applications. In this work the metallized films were developed by electroless copper plating of polyethylene films grafted with vinyl ether of monoethanoleamine. There are several techniques for metal deposition on surface of polymers such as evaporation, sputtering, electroless plating and electrolysis. In this work the metallized films were developed by electroless copper plating of polyethylene films grafted with vinyl ether of monoethanoleamine. Polyethylene films were subjected to gamma-radiation induced surface graft copolymerization with vinyl ether of monoethanolamine. Electroless copper plating was carried out effectively on the modified films. The catalytic processes for the electroless copper plating in the presence and the absence of SnCl2 sensitization were studied and the optimum activation conditions that give the highest plating rate were determined. The effect of grafting degree on the plating rate is studied. Electroless plating conditions (bath additives, pH and temperature) were optimized. Plating rate was determined gravimetrically and spectrophotometrically at different grafting degrees. The results reveal that plating rate is a function of degree of grafting and increases with increasing grafted vinyl ether of monoethanolamine onto polyethylene. It was found that pH 13 of electroless bath and plating temperature 40°C are the optimal conditions for the plating process. The increasing of grafting degree results in faster plating rate at the same pH and temperature. The surface morphology of the metallized films was investigated using scanning electron microscopy (SEM). The adhesion strength between the metallized layer and grafted polymer was studied using tensile machine. SEM photos and adhesion measurements clarified that uniform and adhered deposits were obtained under optimum conditions.
Resumo:
Increasing legislation has steadily been introduced throughout the world to restrict the use of heavy metals, particularly cadmium (Cd) and lead (Pb) in high temperature pigments, ceramics, and optoelectronic material applications. Removal of cadmium from thin-film optical and semiconductor device applications has been hampered by the absence of viable alternatives that exhibit similar properties with stability and durability. We describe a range of tin-based compounds that have been deposited and characterized in terms of their optical and mechanical properties and compare them with existing cadmium-based films that currently find widespread use in the optoelectronic and semiconductor industries. (c) 2008 Optical Society of America.
Resumo:
Epitaxial ultrathin titanium dioxide films of 0.3 to similar to 7 nm thickness on a metal single crystal substrate have been investigated by high resolution vibrational and electron spectroscopies. The data complement previous morphological data provided by scanned probe microscopy and low energy electron diffraction to provide very complete characterization of this system. The thicker films display electronic structure consistent with a stoichiometric TiO2 phase. The thinner films appear nonstoichiometric due to band bending and charge transfer from the metal substrate, while work function measurements also show a marked thickness dependence. The vibrational spectroscopy shows three clear phonon bands at 368, 438, and 829 cm(-1) (at 273 K), which confirms a rutile structure. The phonon band intensity scales linearly with film thickness and shift slightly to lower frequencies with increasing temperature, in accord with results for single crystals. (c) 2007 American Institute of Physics.
Resumo:
The interface between water and Langmuir films of long chain aliphatic molecules is investigated using accurate intermolecular potentials. The stabilities of various ice structures which could form at the interface are examined. Antiferroelectric ice is found to be the most stable, but this stability depends crucially on the first layer of water. Ferroelectric structures are found to collapse upon relaxation. Our model was not able to differentiate between the different nucleation properties of C31H63OH and C30H61OH. A better description of the alcohol–water interaction is probably required to account for this difference.
Resumo:
Coatings and filters for spaceflight far-infrared components require a robust, non-absorptive low-index thin film material to contrast with the typically higher refractive index infrared materials. Barium fluoride is one such material for the 10 to 20µm wavelength infrared region, however its optical and mechanical properties vary depending on the process used to deposit it in thin film form. Thin films of dielectric produced by thermal evaporation are well documented as having a lower packing density and refractive index than bulk material. The porous and columnar micro structure of these films causes possible deterioration of their performance in varied environmental conditions, primarily because of the moisture absorption. Dielectric thin films produced by the more novel technique of ion-beam sputtering are denser with no columnar micro structure and have a packing density and refractive index similar to the bulk material. A comparative study of Barium Fluoride (BaF2) thin films made by conventional thermal evaporation and ion-beam sputtering is reported. Films of similar thicknesses are deposited on Cadmium Telluride and Germanium substrates. The optical and mechanical properties of these films are then examined. The refractive index n of the films is obtained from applying the modified Manifacier's evvelope method to the spectral measurements made on a Perkin Elmer 580 spectrophotometer. An estimate is also made of the value of the extinction coefficient k in the infrared wavelength transparent region of the thin film. In order to study the mechanical properties of the BaF2 films, and evaluate their usefulness in spaceflight infrared filters and coatings, the thin film samples are subjected to MIL-F-48616 environmental tests. Comparisons are made of their performance under these tests.