44 resultados para Zinc selenide
Resumo:
Reactivities of pyridylthioazophenols (1) with zinc(II) salts have been studied and the complexes isolated in pure form and characterized. Pyridylthioazophenols react with zinc( II)acetate in MeOH/EtOH at room temperature to give a series of pyridylsulfinylazophenols (2)but no zinc( II) complex. The sulfoxides (2) have been characterized by IR and NMR. One of the pyridylsulfinylazophenols (2a) has been subjected to single-crystal X-ray analysis in order to confirm details of its structure. A series of dimeric zinc( II) complexes of tetradentate NSNO pyridylthioazophenolates has been isolated through reaction of zinc nitrate in MeOH followed by in situ reaction with azide ion, which acts as a mu-(1,1) bridge. All complexes have been characterized spectroscopically. The detailed structure of one of the dinuclear zinc( II) complexes has been established by a single-crystal X-ray structure determination. In complex 3a two octahedrally coordinated zinc( II) ions are bridged by two end-on azide ions. No reactions of pyridylthioazophenols with zinc chloride in refluxing EtOH have been observed.
Resumo:
Using the I : 2 condensate of benzil dihydrazone and 2-acetylpyridine as the ligand L, two complexes of zinc, [ZnL(CH3COO)]PF6 (1) and [ZnL(H2O)CIO4]CIO4 H2O (2), are synthesised from Zn(CH3COO)(2).2H(2)O and Zn(CIO4)(2).6H(2)O, respectively. From X-ray crystallography, both the complexes are found to be single helical with the metal in distorted octahedral N4O2 environment. In 1, the two oxygen atoms come from the bidentate acetate while 2 is a monoaqua complex with a perchlorate anion bound to the metal in monodentate fashion. The perchlorate in 2 is not at all weakly bound [Zn-O(perchlorate) 2.256(4) A]. Still in acetonitrile solution, the coordinated perchlorate ion dissociates upon deprotonation [reaction (i)].
Resumo:
Reaction of anhydrous ZnCl2 with the 1:2 condensate (L) of benzil and 2-(aminomethyl)pyridine in methanol gives monomeric ZnL'Cl-2 (1) where L' is 2-[(4,5-diphenyl-2-pyridin-2-yl-1H-imidazol-1-yl)-methyl]pyridine. In the X-ray crystal structure, 1 is found to contain tetrahedral zinc with an N2Cl2 coordination sphere and the N-substituent methylpyridine fragment hanging as a free arm. A tentative mechanism is proposed for the zinc mediated conversion of L-->L'. Demetallation of 1 by the action of aqueous NaOH yields L' in the free state. When L' is reacted with Zn(ClO4)(2).6H(2)O in a 1:2 molar proportion, [Zn(L')(2)](n)(ClO4)(2n).(H2O)(n/2).(CH2Cl2)(n/2) (2) is obtained. The zinc atom in 2, as revealed by X-ray crystallography, has a trigonal bipyramidal N-5 coordination sphere. There are two independent ligands in the asymmetric unit of 2. One of them bonds only to one zinc atom in a bidentate mode with the N-substituent methylpyridine hanging free while the other ligand binds to two different zinc atoms in a tridentate fashion, employing the N-substituent methylpyridine nitrogen atom to form the polymeric one-dimensional chain cation.
Resumo:
A new 3-D zinc phosphate, [C5N2H14][Zn-2(PO3(OH))(3)], has been synthesised under solvothermal conditions in the presence of 1-methylpiperazine. The structure, determined by single-crystal X-ray diffraction at 293 K (RMM = 520.9, orthorhombic, space group P2(1)2(1)2(1); a = 10.0517(2) &ANGS;, b = 10.4293(2) &ANGS; and c = 14.9050(5) &ANGS;; V = 1562.52 &ANGS;(3); Z = 4; R(F) = 2.60%, wR(F) = 2.93%), consists of vertex linked ZnO4 and PO3(OH) tetrahedra assembled into (4.8) net sheets which in turn are linked through further PO3(OH) units to generate a 3-D framework. 1-Methylpiperazinium cations reside within the 3-D channel system, held in place by a strong network of hydrogen bonds. The (4.8) net sheets occur in a number of zeolite structures e.g. ABW and GIS and related zinc phosphate phases. © 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.
Resumo:
The synthesis of a range of ditopic polyferrocenyl zinc(II) dithiocarbamate macrocyclic receptors containing ferrocene groups on the macrocycle's periphery and/or as part of the cyclic cavity is reported. The assemblies have been characterised by a range of spectroscopic techniques, electrochemical studies and in two cases by X-ray structure determination. The ability of these host systems to bind and sense electrochemically anionic guest species, isonicotinate and benzoate, and neutral 4-picoline guest was examined by H-1 NMR and cyclic voltammetric titration studies. The strongest association was found between the isonicotinate anion and a dinuclear zinc(II) receptor whose macrocyclic cavity is of complementary size to complex this bidentate guest species in a cooperative manner. Cyclic voltammetric studies demonstrated that all receptors can electrochemically sense the binding of isonicotinate and benzoate via significant cathodic perturbations of the respective ferrocene redox couple.
Resumo:
The levels of zinc in the brain are directly affected by dietary zinc and deficiency has been associated with alcohol withdrawal seizures, excitotoxicity, impaired learning and memory and an accelerated rate of dysfunction in aged brain. Although zinc is essential for a healthy nervous system, high concentrations of zinc are neurotoxic, thus it is important to identify the most effective forms of zinc for treatment of conditions of the central nervous system. Accumulating evidence suggests that zinc-histidine complex (Zn(HiS)(2)) has greater biological potency and enhanced bioavailability compared with other zinc salts and also has antioxidant potential. Therefore, in this study we investigated the ability of zinc-histidine to protect cultured cortical neurons against hydrogen peroxide-induced damage. Pre-treating neurons for 18h with subtoxic concentrations of zinc-histidine (5-25 muM) improved neuronal viability and strongly inhibited hydrogen peroxide-induced (75 muM, 30 min) cell damage as assessed by MTT turnover and morphological analysis 24 It later. Low concentrations of zinc-histidine were more neuroprotective than zinc chloride. There was evidence of an anti-apoptotic mechanism of action as zinc-histidine inhibited hydrogen peroxide-induced caspase-3 activation and c-jun-N-terminal kinase phosphorylation. In summary, zinc supplementation with zinc-histidine protects cultured neurons against oxidative insults and inhibits apoptosis which suggests that zinc-histidine may be beneficial in the treatment of diseases of the CNS associated with zinc deficiency. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A new 3-D zinc phosphate, [C5N2H14][Zn-2(PO3(OH))(3)], has been synthesised under solvothermal conditions in the presence of 1-methylpiperazine. The structure, determined by single-crystal X-ray diffraction at 293 K (RMM = 520.9, orthorhombic, space group P2(1)2(1)2(1); a = 10.0517(2) &ANGS;, b = 10.4293(2) &ANGS; and c = 14.9050(5) &ANGS;; V = 1562.52 &ANGS;(3); Z = 4; R(F) = 2.60%, wR(F) = 2.93%), consists of vertex linked ZnO4 and PO3(OH) tetrahedra assembled into (4.8) net sheets which in turn are linked through further PO3(OH) units to generate a 3-D framework. 1-Methylpiperazinium cations reside within the 3-D channel system, held in place by a strong network of hydrogen bonds. The (4.8) net sheets occur in a number of zeolite structures e.g. ABW and GIS and related zinc phosphate phases. © 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.
Resumo:
Two series of zinc(II) complexes of two Schiff bases (H2L1 and H2L2) formulated as [Zn(HL1/HL2)]ClO4 (1a and 1b) and [Zn(L1/L2)] (2a and 2b), where H2L1 = 1,8-bis(salicylideneamino)-3,6-dithiaoctane and H2L2 = 1,9-bis(salicylideneamino)-3,7-dithianonane, have been prepared and isolated in pure form by changing the chemical environment. Elemental, spectral, and other physicochemical results characterize the complexes. A single crystal X-ray diffraction study confirms the structure of [Zn(HL1)]ClO4 (1a). In 1a, zinc(II) has a distorted octahedral environment with a ZnO2N2S2 chromophore.
Resumo:
Measurements of weighted dietary intakes and plasma determinations of albumin, iron, zinc, ascorbic acid and TIBC were carried out on twenty female multiple sclerosis patients in a long-stay hospital for disabled people. The group included ten patients with a recent history of pressure sores, closely matched with ten patients without pressure sores. Mean daily intake of carbohydrate was found to be higher in the non-pressure sore group whilst intake of zinc was lower in this group. Intakes of all other nutrients were comparable between the two groups. For both groups, intakes of energy, folate, vitamin D, iron and zinc were less than recommended values. Mean plasma levels of albumin and iron were towards the lower limit of the normal range, whilst that for zinc was considerably less than the normal range. Plasma TIBC was slightly above the normal range. Levels of plasma iron and zinc were significantly lower in the pressure sore group. The data indicate that severely disabled hospitalized patients with multiple sclerosis may be at risk of poor nutritional status. The results suggest that in the presence of pressure sores, there are increased requirements for specific nutrients, notably zinc and iron. Consideration is given to the possible value of supplementation of these individuals.
Resumo:
Pregnant rats were given control (46 mg iron/kg, 61 mg zinc/kg), low-Zn (6.9 mg Zn/kg) or low-Zn plus Fe (168 mg Fe/kg) diets from day 1 of pregnancy. The animals were allowed to give birth and parturition times recorded. Exactly 24 h after the end of parturition the pups were killed and analysed for water, fat, protein, Fe and Zn contents and the mothers' haemoglobin (Hb) and packed cell volume (PCV) were measured. There were no differences in weight gain or food intakes throughout pregnancy. Parturition times were similar (mean time 123 (SE 15) min) and there were no differences in the number of pups born. Protein, water and fat contents of the pups were similar but the low-Zn Fe-supplemented group had higher pup Fe than the low-Zn unsupplemented group, and the control group had higher pup Zn than both the low-Zn groups. The low-Zn groups had a greater incidence of haemorrhaged or deformed pups, or both, than the controls. Pregnant rats were given diets of adequate Zn level (40 mg/kg) but with varying Fe:Zn (0.8, 1.7, 2.9, 3.7). Zn retention from the diet was measured using 65Zn as an extrinsic label on days 3, 10 and 17 of pregnancy with a whole-body gamma-counter. A group of non-pregnant rats was also included as controls. The 65Zn content of mothers and pups was measured 24-48 h after birth and at 14, 21 and 24 d of age. In all groups Zn retention was highest from the first meal, fell in the second meal and then rose in the third meal of the pregnant but not the non-pregnant rats. There were no differences between the groups given diets of varying Fe:Zn level. Approximately 25% of the 65Zn was transferred from the mothers to the pups by the time they were 48 h old, and a further 17% during the first 14 d of lactation. The pup 65Zn content did not significantly increase after the first 20 d of lactation but the maternal 65Zn level continued to fall gradually.
Resumo:
1. Female Wistar rats were given an adequate-zinc (60 μg/g) or low-Zn (7 μg/g) diet for a minimum of 2 weeks and then mated. They were then either continued on the same diets (+Zn –Fe or –Zn –Fe) or given similar diets supplemented with four times the normal level of iron (+Zn + Fe or –Zn + Fe). The day before parturition they were killed and the fetuses removed and analysed. 2. There were no differences in numbers of fetuses or the number of resorption sites. In the absence of Fe supplementation, the mean fetal wet weight was significantly less (P < 0.05) in the low-Zn group but there was no effect of Zn in the two Fe-supplemented groups. The addition of Fe significantly decreased (P < 0.05) the mean fetal wet weight in the adequate-Zn groups but had no effect in the low-Zn groups. There were no differences in fetal dry weight, fat, protein or DNA content. Both Fe-supplemented groups produced fetuses of higher Fe concentration (P < 0.01), and mothers with higher bone Fe-concentration (P < 0.01) compared with the non-supplemented groups. The low-Zn groups produced fetuses of lower Zn concentration (P < 0,001) than the adequate-Zn groups but there was no effect on maternal bone Zn concentration. 3. It was concluded that Fe-supplements did not adversely affect fetal growth from mothers given a low-Zn diet, but the addition of Zn to the unsupplemented diet increased fetal wet weight. These findings were not accompanied by any other differences in fetal composition or dry weight, and do not therefore lend support to the suggestion of an Fe-Zn interaction.
Resumo:
Pharmacological levels of zinc oxide (ZnO) incorporated into the post-weaning piglet diet reduce the incidence of diarrhoea caused by enterotoxigenic Escherichia coli (ETEC) K88. The mechanism for this is not understood. Here, Intestinal Porcine Epithelial Cells (IPEC) J2 were used as an in vitro model of the porcine intestine. ZnO reduced IPEC J2 viability at concentrations >= 200 mu M, and ETEC adhesion to the host cell was unaffected by ZnO. Characterisation of the metabolism of IPEC J2 cells and ETEC established the effects of ZnO treatment on the metabolic profile of both. Although 100 mu M ZnO did not inhibit growth of either host or pathogen in fully supplemented media, metabolic profiles were significantly altered. Glucose and mannose were essential energy sources for IPEC J2 cells in the presence of ZnO, as the ability to utilise other sources was compromised. The increase in specificity of requirements to support respiration in ETEC was more pronounced, in particular the need for cysteine as a nitrogen source. These findings indicate that ZnO impacts on both host cell and pathogen metabolism and may provide insight into the mechanism for diarrhoea reduction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The epoxide ring in 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) opens up in its reaction with 4-methylaniline and 4-methoxyaniline in water in equimolar proportion at room temperature without any Lewis acid catalyst to give a monohydrate of 6-(4-methyl-phenylamino)-5,6-dihydro-1,10-phenanthrolin-5-ol (L′·H2O) and 6-(4-methoxyphenyl-amino)-5,6-dihydro-1,10-phenanthrolin-5-ol (L″) respectively. Reaction time decreases from 72 to 14 h in boiling water. But the yields become less. Reaction of L with Zn(ClO4)2·6H2O in methanol in 3:1 molar ratio at room temperature affords white [ZnL3](ClO4)2·H2O. The X-ray crystal structure of the acetonitrile solvate [ZnL3](ClO4)2·MeCN has been determined which shows that the metal has a distorted octahedral N6 coordination sphere. [ZnL3](ClO4)2·2H2O reacts with 4-methylaniline and 4-methoxyaniline in boiling water in 1:3 molar proportion in the absence of any Lewis acid catalyst to produce [ZnL′3](ClO4)2·4H2O and [ZnL″3](ClO4)2·H2O, respectively in 1–4 h time in somewhat low yield. In the 1H NMR spectra of [ZnL′3](ClO4)2·4H2O and [ZnL″3](ClO4)2·H2O, only one sharp methyl signal is observed implicating that only one diastereomer out of the 23 possibilities is formed. The same diastereomers are obtained when L′·H2O and L″ are reacted directly with Zn(ClO4)2·6H2O in tetrahydrofuran at room temperature in very good yields. Reactions of L′·H2O and L″ with Ru(phen)2Cl2·2H2O (phen = 1,10-phenanthroline) in equimolar proportion in methanol–water mixture under refluxing condition lead to the isolation of two diastereomers of [Ru(phen)2L′](ClO4)2·2H2O and [Ru(phen)2L″](ClO4)2·2H2O.